! Copyright (c) 2012-2013 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2012-2020 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2012-2013 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2013-2016 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2018 Raphael Haupt <raphael.haupt@uni-siegen.de> ! Copyright (c) 2019-2020 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2019 Jana Gericke <jana.gericke@uni-siegen.de> ! Copyright (c) 2021-2023 Gregorio Gerardo Spinelli <gregoriogerardo.spinelli@dlr.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, ! this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF SIEGEN “AS IS” AND ANY EXPRESS ! OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ! OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ! IN NO EVENT SHALL UNIVERSITY OF SIEGEN OR CONTRIBUTORS BE LIABLE FOR ANY ! DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ! ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ************************************************************************** ! !> author: Jiaxing Qi !! author: Manuel Hasert !! Linear Interpolation of flow quantities between different grid levels !! !! # Interpolation !! !! The routines defined here, fill up the ghost elements with valid data. !! Ghost elements are employed at grid level interfaces to provide valid !! pdf values to the neighboring fluid elements. This way, the solvers can !! act on elements of the same size only, treating the levels successively. !! Target elements are the ghost elements, which have to be filled with !! valid values. !! Source elements are the fluid elements from other levels, from where to !! take the input values for the interpolation. !! The target ghost elements on the target level have corresponding source !! fluid elements on the source level. !! !! [[tem_topology_module]] For a detailed description of the grid !! !! # Workflow !! !! Each interpolation routine acts on a list of ghost elements. !! This list contains pointers to the position in the total list. !! For each of these ghost elements, the source elements are identified. !! Before that, the sourceLevel is identified. However, the code is restricted !! to work with a level jump of only one level, so the sourceLevel is:\n !! for fillMyGhostsFromFiner: sourceLevel = targetLevel + 1 !! for fillFinerGhostsFromMe: sourceLevel = targetLevel - 1 !! !! For an overview over implemented interpolation methods, see !! [Interpolation methods](../page/features/intp_methods.html) !! ! Copyright (c) 2011-2013 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2011 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2011 Konstantin Kleinheinz <k.kleinheinz@grs-sim.de> ! Copyright (c) 2011-2012 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012, 2014-2016 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2012 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2013-2015, 2019 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, ! this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF SIEGEN “AS IS” AND ANY EXPRESS ! OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ! OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ! IN NO EVENT SHALL UNIVERSITY OF SIEGEN OR CONTRIBUTORS BE LIABLE FOR ANY ! DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ! ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! Copyright (c) 2013 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! Make sure loglvl is defined to an integer value. ! Usually this should be defined on the command line with -Dloglvl= ! to some value. module mus_interpolate_linear_module use iso_c_binding, only: c_loc, c_ptr, c_f_pointer ! include treelm modules use env_module, only: rk use tem_aux_module, only: tem_abort use tem_element_module, only: eT_GhostFromCoarser use tem_param_module, only: cs2inv, cs2, PI, div1_2, div1_9, div4_9,& & div1_36, div2_3, c_x, c_y, c_z,& & rho0, rho0Inv use tem_comm_env_module, only: tem_comm_env_type use tem_debug_module, only: dbgUnit use tem_construction_module, only: tem_levelDesc_type use tem_stencil_module, only: tem_stencilHeader_type use tem_logging_module, only: logUnit use tem_matrix_module, only: tem_matrix_type use tem_varSys_module, only: tem_varSys_type use tem_time_module, only: tem_time_type ! include musubi modules use mus_interpolate_debug_module, only: TGV_2D use mus_scheme_layout_module, only: mus_scheme_layout_type use mus_derVarPos_module, only: mus_derVarPos_type use mus_interpolate_header_module, only: mus_interpolation_method_type use mus_physics_module, only: mus_physics_type use mus_field_prop_module, only: mus_field_prop_type use mus_fluid_module, only: mus_fluid_type use mus_relaxationParam_module, only: mus_calcOmegaFromVisc use mus_derivedQuantities_module2, only: getNonEqFac_intp_fine_to_coarse, & & getNonEqFac_intp_coarse_to_fine implicit none private public :: fillArbiFinerGhostsFromMe_linear public :: fillArbiFinerGhostsFromMe_linear2D public :: fillFinerGhostsFromMe_linear_feq_fneq public :: fillFinerGhostsFromMe_linearLES_feq_fneq public :: fillFinerGhostsFromMe_linear2D_feq_fneq contains ! **************************************************************************** ! !> Interpolate auxiliary field from coarse source to fine target !! !! This subroutine's interface must match the abstract interface definition !! [[intpRoutine_arbitraryVal]] in intp/[[mus_interpolate_header_module]].f90 !! in order to be callable via !! [[mus_interpolation_method_type:do_intpArbiVal]] function pointer. subroutine fillArbiFinerGhostsFromMe_linear( method, tLevelDesc, level, & & stencil, sVal, tVal, nTargets, & & targetList, nScalars ) ! ------------------------------------------------------------------ ! class(mus_interpolation_method_type), intent(inout) :: method !> my refinement level integer, intent(in) :: level !> stencil header type(tem_stencilHeader_type), intent(in) :: stencil !> State vector of SOURCE FLUID elements real(kind=rk), intent(in) :: sVal(:) !> State vector of TARGET GHOST elements real(kind=rk), intent(inout) :: tVal(:) !> level descriptor on target level type( tem_levelDesc_type ), intent(in) :: tLevelDesc !> List of target elements ( their position in depSource list ) integer, intent(in) :: nTargets integer, intent(in) :: targetList(nTargets) !> number of scalars to interpolate integer, intent(in) :: nScalars ! ------------------------------------------------------------------ ! integer :: sourceLevel ! level of source elements integer :: sourceElem ! treeId of current source element integer :: targetLevel ! level of target elements integer :: targetElem ! treeId of current source element integer :: iElem ! current target element (for outer loop) integer :: indElem ! element counter for indirection list integer :: iSourceElem ! current source element (for inner loop) integer :: nSourceElems ! number of source elements for the current target integer :: posInIntpMatLSF real(kind=rk) :: tArbi(nScalars) real(kind=rk) :: sArbi(nScalars, stencil%QQ) ! temp source ArbiField ! -------------------------------------------------------------------------- sourceLevel = level targetLevel = level + 1 ! Treat all coarse target elements do indElem = 1, nTargets iElem = targetList( indElem ) ! Read the target element targetElem = iElem + tLevelDesc%offset( 1, eT_ghostFromCoarser) ! Get how many fine source elements we have for interpolation. nSourceElems = tLevelDesc%depFromCoarser( iElem )%elem%nVals posInIntpMatLSF = tLevelDesc%depFromCoarser( iElem )%posInIntpMatLSF ! Now loop over all fine source elements for this target: do iSourceElem = 1, nSourceElems ! Get the source element sourceElem = tLevelDesc%depFromCoarser( iElem ) & & %elem%val( iSourceElem ) ! Get souce auxilary variables sArbi(:, iSourceElem) = sVal( (sourceElem-1)*nScalars+1 & & : sourceElem*nScalars ) end do ! iSourceElem ! interpolate all auxiliary variables by linear interpolation tArbi(1:nScalars) = mus_interpolate_linear3D_leastSq( & & srcMom = sArbi(1:nScalars, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = nScalars ) ! write interpolated value tVal((targetElem-1)*nScalars+1 : targetElem*nScalars) & & = tArbi enddo end subroutine fillArbiFinerGhostsFromMe_linear ! **************************************************************************** ! ! **************************************************************************** ! !> Interpolate auxiliary field from coarse source to fine target !! !! This subroutine's interface must match the abstract interface definition !! [[intpRoutine_arbitraryVal]] in intp/[[mus_interpolate_header_module]].f90 !! in order to be callable via !! [[mus_interpolation_method_type:do_intpArbiVal]] function pointer. subroutine fillArbiFinerGhostsFromMe_linear2D( method, tLevelDesc, level, & & stencil, sVal, tVal, nTargets,& & targetList, nScalars ) ! ------------------------------------------------------------------ ! class(mus_interpolation_method_type), intent(inout) :: method !> my refinement level integer, intent(in) :: level !> stencil header type(tem_stencilHeader_type), intent(in) :: stencil !> State vector of SOURCE FLUID elements real(kind=rk), intent(in) :: sVal(:) !> State vector of TARGET GHOST elements real(kind=rk), intent(inout) :: tVal(:) !> level descriptor on target level type( tem_levelDesc_type ), intent(in) :: tLevelDesc !> List of target elements ( their position in depSource list ) integer, intent(in) :: nTargets integer, intent(in) :: targetList(nTargets) !> number of scalars to interpolate integer, intent(in) :: nScalars ! ------------------------------------------------------------------ ! integer :: sourceLevel ! level of source elements integer :: sourceElem ! treeId of current source element integer :: targetLevel ! level of target elements integer :: targetElem ! treeId of current source element integer :: iElem ! current target element (for outer loop) integer :: indElem ! element counter for indirection list integer :: iSourceElem ! current source element (for inner loop) integer :: nSourceElems ! number of source elements for the current target integer :: posInIntpMatLSF real(kind=rk) :: tArbi(nScalars) real(kind=rk) :: sArbi(nScalars, stencil%QQ) ! temp source ArbiField ! -------------------------------------------------------------------------- sourceLevel = level targetLevel = level + 1 ! Treat all coarse target elements do indElem = 1, nTargets iElem = targetList( indElem ) ! Read the target element targetElem = iElem + tLevelDesc%offset( 1, eT_ghostFromCoarser) ! Get how many fine source elements we have for interpolation. nSourceElems = tLevelDesc%depFromCoarser( iElem )%elem%nVals posInIntpMatLSF = tLevelDesc%depFromCoarser( iElem )%posInIntpMatLSF ! Now loop over all fine source elements for this target: do iSourceElem = 1, nSourceElems ! Get the source element sourceElem = tLevelDesc%depFromCoarser( iElem ) & & %elem%val( iSourceElem ) ! Get souce auxilary variables sArbi(:, iSourceElem) = sVal( (sourceElem-1)*nScalars+1 & & : sourceElem*nScalars ) end do ! iSourceElem ! interpolate all auxiliary variables by linear interpolation tArbi(1:nScalars) = mus_interpolate_linear2D_leastSq( & & srcMom = sArbi(1:nScalars, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = nScalars ) ! write interpolated value tVal((targetElem-1)*nScalars+1 : targetElem*nScalars) & & = tArbi enddo end subroutine fillArbiFinerGhostsFromMe_linear2D ! **************************************************************************** ! ! ************************************************************************** ! !> Fill fine ghost from coarse fluid by linear interpolation for D2Q9 !! stencil. !! 1. Compute moments for all source elements, save in momBuf !! 2. For each target, interpolate moments (den, vel, tau) !! (10 moments for 3D and 6 moments for 2D) !! 3. calculate fEq and use it to calculate high order moments !! 4. convert moments to PDF !! This routine is used by acoustic linear interpolation. !! !! This subroutine's interface must match the abstract interface definition !! [[intpRoutine]] in intp/[[mus_interpolate_header_module]].f90 in order to !! be callable via [[mus_interpolation_method_type:do_intp]] function pointer. subroutine fillFinerGhostsFromMe_linear_feq_fneq( method, fieldProp, & & tLevelDesc, level, sState, sNeigh, snSize, sAuxField, tState, & & tNeigh, tnSize, layout, nTargets, targetList, physics, time, & & varSys, derVarPos ) ! -------------------------------------------------------------------- ! class(mus_interpolation_method_type), intent(inout) :: method !> Array of field properties (fluid or species) type(mus_field_prop_type), target, intent(in) :: fieldProp(:) !> level descriptor on target level type( tem_levelDesc_type ), intent(in) :: tLevelDesc !> my refinement level integer, intent(in) :: level !> State vector of SOURCE FLUID elements real(kind=rk), intent(in) :: sState(:) integer, intent(in) :: sNeigh(:) integer, intent(in) :: snSize !> State vector of TARGET GHOST elements real(kind=rk), intent(inout) :: tState(:) integer, intent(in) :: tNeigh(:) integer, intent(in) :: tnSize !> AuxField variable to read rho and vel from source elements real(kind=rk), intent(inout) :: sAuxField(:) !> the layout used type( mus_scheme_layout_type ), intent(in) :: layout !> List of target elements ( their position in depSource list ) integer, intent(in) :: nTargets integer, intent(in) :: targetList(nTargets) !> physics type to convert lattice to physics SI unit and vice versa !! @todo: This can be replaced by scale factor by level type( mus_physics_type ), intent(in) :: physics !> time required to compute viscosity on target element barycenter type(tem_time_type), intent(in) :: time !> scheme variable system type( tem_varSys_type ), intent(in) :: varSys !> position of all derive variable in varSys for all fields type(mus_derVarPos_type), intent(in) :: derVarPos(:) ! -------------------------------------------------------------------- ! integer :: sourceLevel ! level of source elements integer :: sourceElem ! treeId of current source element integer :: targetLevel ! level of target elements integer :: targetElem ! treeId of current source element integer :: iElem, indElem, iDir integer :: iSourceElem ! current source element (for inner loop) integer :: nSourceElems ! number of source elements for the current target ! pdf to reconstruct from real(kind=rk) :: f( layout%fStencil%QQ ) ! pdf to interpolate real(kind=rk) :: f_neq( layout%fStencil%QQ, layout%fStencil%QQ ) real(kind=rk) :: f_eq( layout%fStencil%QQ, layout%fStencil%QQ ) ! source elements' pdf real(kind=rk) :: t_f_eq( layout%fStencil%QQ ) ! temp pdf calculation real(kind=rk) :: t_f_neq( layout%fStencil%QQ ) ! temp pdf calculation ! shear stress scaling factor real(kind=rk) :: fac, rho, vel(3) integer :: QQ integer :: posInIntpMatLSF type(mus_fluid_type), pointer :: fluid integer :: elemOff, dens_pos, vel_pos(3), nScalars real(kind=rk) :: fVisc, fOmegaKine, cOmegaKine ! --------------------------------------------------------------------------- vel = 0._rk fluid => fieldProp(1)%fluid QQ = layout%fStencil%QQ nScalars = varSys%nScalars sourceLevel = level targetLevel = level + 1 dens_pos = varSys%method%val(derVarPos(1)%density)%auxField_varPos(1) vel_pos = varSys%method%val(derVarPos(1)%velocity)%auxField_varPos(1:3) ! Treat all fine target elements: do indElem = 1, nTargets iElem = targetList( indElem ) targetElem = iElem + tLevelDesc%offset( 1, eT_ghostFromCoarser) nSourceElems = tLevelDesc%depFromCoarser( iElem )%elem%nVals posInIntpMatLSF = tLevelDesc%depFromCoarser( iElem )%posInIntpMatLSF ! First calculate all the required moments for all the source elements do iSourceElem = 1, nSourceElems ! Get the source element's position in the state vector sourceElem = tLevelDesc%depFromCoarser( iElem ) & & %elem%val( iSourceElem ) do iDir = 1, QQ ! this is post collision f(iDir) = sState( ( sourceelem-1)* nscalars+ idir+( 1-1)* qq) enddo ! element offset for auxField array elemOff = (sourceElem-1)*varSys%nAuxScalars ! local density rho = sAuxField(elemOff + dens_pos) ! local x-, y-, z-velocity vel(1) = sAuxField(elemOff + vel_pos(1)) vel(2) = sAuxField(elemOff + vel_pos(2)) vel(3) = sAuxField(elemOff + vel_pos(3)) f_eq(:, iSourceElem) = layout%quantities%pdfEq_ptr( rho = rho, & & vel = vel, & & QQ = QQ ) f_neq(:, iSourceElem) = f(:) - f_eq(:, iSourceElem) enddo t_f_eq = mus_interpolate_linear3D_leastSq( & & srcMom = f_eq(1:QQ, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = QQ ) t_f_neq = mus_interpolate_linear3D_leastSq( & & srcMom = f_neq(1:QQ, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = QQ ) ! get normalized kinematic viscosity on target (fine) element fVisc = fluid%viscKine%dataOnLvl(targetLevel)%val(targetElem) ! relation between coarse and fine grid kinematic viscosity: ! v^s_c = 0.5 v^s_f ! calculate omega on source and target level fOmegaKine = mus_calcOmegaFromVisc(fVisc) cOmegaKine = mus_calcOmegaFromVisc(0.5_rk*fVisc) !evaluate scaling factor fac = getNonEqFac_intp_coarse_to_fine( cOmegaKine, fOmegaKine ) ! Rescale the non eq pdfs do iDir=1, QQ t_f_neq(iDir) = t_f_neq(iDir) * fac f(iDir) = t_f_neq(iDir) + t_f_eq(iDir) ! Now write the resulting pdf in the current direction to the target tState( ( targetelem-1)* nscalars+ idir+( 1-1)* qq) = f(iDir) enddo end do ! indElem end subroutine fillFinerGhostsFromMe_linear_feq_fneq ! ****************************************************************************** ! ! ************************************************************************** ! !> Fill fine ghost from coarse fluid by linear interpolation for D2Q9 !! stencil. !! 1. Compute moments for all source elements, save in momBuf !! 2. For each target, interpolate moments (den, vel, tau) !! (10 moments for 3D and 6 moments for 2D) !! 3. calculate fEq and use it to calculate high order moments !! 4. convert moments to PDF !! This routine is used by acoustic linear interpolation. !! !! This subroutine's interface must match the abstract interface definition !! [[intpRoutine]] in intp/[[mus_interpolate_header_module]].f90 in order to !! be callable via [[mus_interpolation_method_type:do_intp]] function pointer. subroutine fillFinerGhostsFromMe_linearLES_feq_fneq( method, fieldProp, & & tLevelDesc, level, sState, sNeigh, snSize, sAuxField, tState, & & tNeigh, tnSize, layout, nTargets, targetList, physics, time, & & varSys, derVarPos ) ! -------------------------------------------------------------------- ! class(mus_interpolation_method_type), intent(inout) :: method !> Array of field properties (fluid or species) type(mus_field_prop_type), target, intent(in) :: fieldProp(:) !> level descriptor on target level type( tem_levelDesc_type ), intent(in) :: tLevelDesc !> my refinement level integer, intent(in) :: level !> State vector of SOURCE FLUID elements real(kind=rk), intent(in) :: sState(:) integer, intent(in) :: sNeigh(:) integer, intent(in) :: snSize !> State vector of TARGET GHOST elements real(kind=rk), intent(inout) :: tState(:) integer, intent(in) :: tNeigh(:) integer, intent(in) :: tnSize !> AuxField variable to read rho and vel from source elements real(kind=rk), intent(inout) :: sAuxField(:) !> the layout used type( mus_scheme_layout_type ), intent(in) :: layout !> List of target elements ( their position in depSource list ) integer, intent(in) :: nTargets integer, intent(in) :: targetList(nTargets) !> physics type to convert lattice to physics SI unit and vice versa !! @todo: This can be replaced by scale factor by level type( mus_physics_type ), intent(in) :: physics !> time required to compute viscosity on target element barycenter type(tem_time_type), intent(in) :: time !> scheme variable system type( tem_varSys_type ), intent(in) :: varSys !> position of all derive variable in varSys for all fields type(mus_derVarPos_type), intent(in) :: derVarPos(:) ! -------------------------------------------------------------------- ! integer :: sourceLevel ! level of source elements integer :: sourceElem ! treeId of current source element integer :: targetLevel ! level of target elements integer :: targetElem ! treeId of current source element integer :: iElem, indElem, iDir integer :: iSourceElem ! current source element (for inner loop) integer :: nSourceElems ! number of source elements for the current target ! pdf to reconstruct from real(kind=rk) :: f( layout%fStencil%QQ ) ! pdf to interpolate real(kind=rk) :: f_neq( layout%fStencil%QQ, layout%fStencil%QQ ) real(kind=rk) :: f_eq( layout%fStencil%QQ, layout%fStencil%QQ ) real(kind=rk) :: sTurbVisc(layout%fStencil%QQ) ! source elements' pdf real(kind=rk) :: t_f_eq( layout%fStencil%QQ ) ! temp pdf calculation real(kind=rk) :: t_f_neq( layout%fStencil%QQ ) ! temp pdf calculation real(kind=rk) :: tTurbVisc(1) ! shear stress scaling factor real(kind=rk) :: fac, rho, vel(3) integer :: QQ integer :: posInIntpMatLSF type(mus_fluid_type), pointer :: fluid integer :: elemOff, dens_pos, vel_pos(3), nScalars real(kind=rk) :: fVisc, fOmegaKine, cOmegaKine ! --------------------------------------------------------------------------- vel = 0._rk fluid => fieldProp(1)%fluid QQ = layout%fStencil%QQ nScalars = varSys%nScalars sourceLevel = level targetLevel = level + 1 dens_pos = varSys%method%val(derVarPos(1)%density)%auxField_varPos(1) vel_pos = varSys%method%val(derVarPos(1)%velocity)%auxField_varPos(1:3) ! Treat all fine target elements: do indElem = 1, nTargets iElem = targetList( indElem ) targetElem = iElem + tLevelDesc%offset( 1, eT_ghostFromCoarser) nSourceElems = tLevelDesc%depFromCoarser( iElem )%elem%nVals posInIntpMatLSF = tLevelDesc%depFromCoarser( iElem )%posInIntpMatLSF ! First calculate all the required moments for all the source elements do iSourceElem = 1, nSourceElems ! Get the source element's position in the state vector sourceElem = tLevelDesc%depFromCoarser( iElem ) & & %elem%val( iSourceElem ) do iDir = 1, QQ ! this is post collision f(iDir) = sState( ( sourceelem-1)* nscalars+ idir+( 1-1)* qq) enddo ! element offset for auxField array elemOff = (sourceElem-1)*varSys%nAuxScalars ! local density rho = sAuxField(elemOff + dens_pos) ! local x-, y-, z-velocity vel(1) = sAuxField(elemOff + vel_pos(1)) vel(2) = sAuxField(elemOff + vel_pos(2)) vel(3) = sAuxField(elemOff + vel_pos(3)) f_eq(:, iSourceElem) = layout%quantities%pdfEq_ptr( rho = rho, & & vel = vel, & & QQ = QQ ) f_neq(:, iSourceElem) = f(:) - f_eq(:, iSourceElem) ! get turbulent viscosity sTurbVisc(iSourceElem) = fluid%turbulence%dataOnLvl(sourceLevel) & & %visc(sourceElem) enddo t_f_eq = mus_interpolate_linear3D_leastSq( & & srcMom = f_eq(1:QQ, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = QQ ) t_f_neq = mus_interpolate_linear3D_leastSq( & & srcMom = f_neq(1:QQ, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = QQ ) !interpolate turbulent viscosity to target element tTurbVisc = mus_interpolate_linear3D_leastSq( & & srcMom = sTurbVisc(1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = 1 ) ! scale interpolated turbulent viscosity to target element fluid%turbulence%dataOnLvl(targetLevel)%visc(targetElem) & & = fluid%turbulence%fac_c2f*tTurbVisc(1) ! get normalized kinematic viscosity on target (fine) element fVisc = fluid%viscKine%dataOnLvl(targetLevel)%val(targetElem) ! relation between coarse and fine grid kinematic viscosity: ! v^s_c = 0.5 v^s_f ! calculate omega on source and target level fOmegaKine = mus_calcOmegaFromVisc(fVisc + fluid%turbulence%fac_c2f*tTurbVisc(1)) cOmegaKine = mus_calcOmegaFromVisc(0.5_rk*fVisc + tTurbVisc(1)) !evaluate scaling factor fac = getNonEqFac_intp_coarse_to_fine( cOmegaKine, fOmegaKine ) ! Rescale the non eq pdfs do iDir=1, QQ t_f_neq(iDir) = t_f_neq(iDir) * fac f(iDir) = t_f_neq(iDir) + t_f_eq(iDir) ! Now write the resulting pdf in the current direction to the target tState( ( targetelem-1)* nscalars+ idir+( 1-1)* qq) = f(iDir) enddo end do ! indElem end subroutine fillFinerGhostsFromMe_linearLES_feq_fneq ! ****************************************************************************** ! ! ************************************************************************** ! !> Fill fine ghost from coarse fluid by linear interpolation for D2Q9 !! stencil. !! 1. Compute moments for all source elements, save in momBuf !! 2. For each target, interpolate moments (den, vel, tau) !! (10 moments for 3D and 6 moments for 2D) !! 3. calculate fEq and use it to calculate high order moments !! 4. convert moments to PDF !! This routine is used by acoustic linear interpolation. !! !! This subroutine's interface must match the abstract interface definition !! [[intpRoutine]] in intp/[[mus_interpolate_header_module]].f90 in order to !! be callable via [[mus_interpolation_method_type:do_intp]] function pointer. subroutine fillFinerGhostsFromMe_linear2D_feq_fneq( method, fieldProp, & & tLevelDesc, level, sState, sNeigh, snSize, sAuxField, tState, & & tNeigh, tnSize, layout, nTargets, targetList, physics, time, & & varSys, derVarPos ) ! -------------------------------------------------------------------- ! class(mus_interpolation_method_type), intent(inout) :: method !> Array of field properties (fluid or species) type(mus_field_prop_type), target, intent(in) :: fieldProp(:) !> level descriptor on target level type( tem_levelDesc_type ), intent(in) :: tLevelDesc !> my refinement level integer, intent(in) :: level !> State vector of SOURCE FLUID elements real(kind=rk), intent(in) :: sState(:) integer, intent(in) :: sNeigh(:) integer, intent(in) :: snSize !> State vector of TARGET GHOST elements real(kind=rk), intent(inout) :: tState(:) integer, intent(in) :: tNeigh(:) integer, intent(in) :: tnSize !> AuxField variable to read rho and vel from source elements real(kind=rk), intent(inout) :: sAuxField(:) !> the layout used type( mus_scheme_layout_type ), intent(in) :: layout !> List of target elements ( their position in depSource list ) integer, intent(in) :: nTargets integer, intent(in) :: targetList(nTargets) !> physics type to convert lattice to physics SI unit and vice versa !! @todo: This can be replaced by scale factor by level type( mus_physics_type ), intent(in) :: physics !> time required to compute viscosity on target element barycenter type(tem_time_type), intent(in) :: time !> scheme variable system type( tem_varSys_type ), intent(in) :: varSys !> position of all derive variable in varSys for all fields type(mus_derVarPos_type), intent(in) :: derVarPos(:) ! -------------------------------------------------------------------- ! integer :: sourceLevel ! level of source elements integer :: sourceElem ! treeId of current source element integer :: targetLevel ! level of target elements integer :: targetElem ! treeId of current source element integer :: iElem, indElem, iDir integer :: iSourceElem ! current source element (for inner loop) integer :: nSourceElems ! number of source elements for the current target ! pdf to reconstruct from real(kind=rk) :: f( layout%fStencil%QQ ) ! pdf to interpolate real(kind=rk) :: f_neq( layout%fStencil%QQ, layout%fStencil%QQ ) real(kind=rk) :: f_eq( layout%fStencil%QQ, layout%fStencil%QQ ) ! source elements' pdf real(kind=rk) :: t_f_eq( layout%fStencil%QQ ) ! temp pdf calculation real(kind=rk) :: t_f_neq( layout%fStencil%QQ ) ! temp pdf calculation ! shear stress scaling factor real(kind=rk) :: fac, rho, vel(3) integer :: QQ integer :: posInIntpMatLSF type(mus_fluid_type), pointer :: fluid integer :: elemOff, dens_pos, vel_pos(3), nScalars real(kind=rk) :: fVisc, fOmegaKine, cOmegaKine ! --------------------------------------------------------------------------- vel = 0._rk fluid => fieldProp(1)%fluid QQ = layout%fStencil%QQ nScalars = varSys%nScalars sourceLevel = level targetLevel = level + 1 dens_pos = varSys%method%val(derVarPos(1)%density)%auxField_varPos(1) vel_pos = varSys%method%val(derVarPos(1)%velocity)%auxField_varPos(1:3) ! Treat all fine target elements: do indElem = 1, nTargets iElem = targetList( indElem ) targetElem = iElem + tLevelDesc%offset( 1, eT_ghostFromCoarser) nSourceElems = tLevelDesc%depFromCoarser( iElem )%elem%nVals posInIntpMatLSF = tLevelDesc%depFromCoarser( iElem )%posInIntpMatLSF ! First calculate all the required moments for all the source elements do iSourceElem = 1, nSourceElems ! Get the source element's position in the state vector sourceElem = tLevelDesc%depFromCoarser( iElem ) & & %elem%val( iSourceElem ) do iDir = 1, QQ ! this is post collision f(iDir) = sState( ( sourceelem-1)* nscalars+ idir+( 1-1)* qq) enddo ! element offset for auxField array elemOff = (sourceElem-1)*varSys%nAuxScalars ! local density rho = sAuxField(elemOff + dens_pos) ! local x-, y-velocity vel(1) = sAuxField(elemOff + vel_pos(1)) vel(2) = sAuxField(elemOff + vel_pos(2)) f_eq(:, iSourceElem) = layout%quantities%pdfEq_ptr( rho = rho, & & vel = vel, & & QQ = QQ ) f_neq(:, iSourceElem) = f(:) - f_eq(:, iSourceElem) enddo t_f_eq = mus_interpolate_linear2D_leastSq( & & srcMom = f_eq(1:QQ, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = QQ ) t_f_neq = mus_interpolate_linear2D_leastSq( & & srcMom = f_neq(1:QQ, 1:nSourceElems), & & targetCoord = tLevelDesc%depFromCoarser( iElem )%coord, & & LSFmat = method%intpMat_forLSF%matArray & & %val(posInIntpMatLSF), & & nSources = nSourceElems, & & nVals = QQ ) ! get normalized kinematic viscosity on target (fine) element fVisc = fluid%viscKine%dataOnLvl(targetLevel)%val(targetElem) ! relation between coarse and fine grid kinematic viscosity: ! v^s_c = 0.5 v^s_f ! calculate omega on source and target level fOmegaKine = mus_calcOmegaFromVisc(fVisc) cOmegaKine = mus_calcOmegaFromVisc(0.5_rk*fVisc) !evaluate scaling factor fac = getNonEqFac_intp_coarse_to_fine( cOmegaKine, fOmegaKine ) ! Rescale the non eq pdfs do iDir=1, QQ t_f_neq(iDir) = t_f_neq(iDir) * fac f(iDir) = t_f_neq(iDir) + t_f_eq(iDir) ! Now write the resulting pdf in the current direction to the target tState( ( targetelem-1)* nscalars+ idir+( 1-1)* qq) = f(iDir) enddo end do ! indElem end subroutine fillFinerGhostsFromMe_linear2D_feq_fneq ! ****************************************************************************** ! ! ****************************************************************************** ! !> Bilinear interpolation for a vector quantity phi !! ! real(kind=rk), dimension(6,9),parameter :: intpMaxtrix = & ! reshape((/ & ! & div2_9, -div1_6, 0.0_rk, div1_6, -div1_3, 0.0_rk, & ! & div2_9, 0.0_rk, -div1_6, -div1_3, div1_6, 0.0_rk, & ! & div2_9, div1_6, 0.0_rk, div1_6, -div1_3, 0.0_rk, & ! & div2_9, 0.0_rk, div1_6, -div1_3, div1_6, 0.0_rk, & ! & -div1_9, -div1_6, -div1_6, div1_6, div1_6, 0.25_rk, & ! & -div1_9, -div1_6, div1_6, div1_6, div1_6, -0.25_rk, & ! & -div1_9, div1_6, -div1_6, div1_6, div1_6, -0.25_rk, & ! & -div1_9, div1_6, div1_6, div1_6, div1_6, 0.25_rk, & ! & div5_9, 0.0_rk, 0.0_rk, -div1_3, -div1_3, 0.0_rk & ! /),(/6,9/)) pure function mus_interpolate_linear2D_leastSq( srcMom, targetCoord, LSFmat, & & nSources, nVals ) result(phi) ! --------------------------------------------------------------------------- !> number of quantities to interpolation integer, intent(in) :: nVals !> Number of source elements integer, intent(in) :: nSources !> source values of the momentum on the square corners real(kind=rk), intent(in) :: srcMom(nVals, nSources) !> interpolation location within the square real(kind=rk), intent(in) :: targetCoord(3) !> matrix for least square fit type(tem_matrix_type), intent(in) :: LSFmat !> interpolated value real(kind=rk) :: phi( nVals ) ! --------------------------------------------------------------------------- real(kind=rk) :: a(3) ! Coefficients integer :: iVal ! --------------------------------------------------------------------------- ! We extract momentum information completely on the view of the source ! coordinate system ! Set the right hand side of the equation system ! Solve the problem, where b = rhs, x = coefficients ! A*x = b ! overdetermined, solve the least Square fit problem ! (A^T)A*x = (A^T)b ! x = ((A^T)A)^-1*(A^T)b ! Solve linear system of equation with inverted matrix do iVal = 1, nVals a(:) = matmul( LSFmat%A, srcMom(iVal, :) ) ! Evaluate the bubble function with the above calculated coefficients ! m_pi(x) = a1+a2*xcoord+a3*ycoord+a4*xcoord*xcoord+a5*ycoord*ycoord+a6*xcoord*ycoord; phi( iVal ) = a( 1) & & + a( 2)*targetCoord(c_x) & & + a( 3)*targetCoord(c_y) end do end function mus_interpolate_linear2D_leastSq ! ****************************************************************************** ! ! ****************************************************************************** ! !> Trilinear interpolation for a vector quantity phi !! Each phi corresponds to each moment ! matrixInv%A(1:10,1:19) = ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ! [ 4/21 4/21 4/21 4/21 4/21 4/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 -1/21 3/7] ! [-1/10 0 0 1/10 0 0 0 0 0 0 -1/10 1/10 -1/10 1/10 -1/10 -1/10 1/10 1/10 0] ! [ 0 -1/10 0 0 1/10 0 -1/10 -1/10 1/10 1/10 0 0 0 0 -1/10 1/10 -1/10 1/10 0] ! [ 0 0 -1/10 0 0 1/10 -1/10 1/10 -1/10 1/10 -1/10 -1/10 1/10 1/10 0 0 0 0 0] ! [ 1/42 -1/7 -1/7 1/42 -1/7 -1/7 -1/21 -1/21 -1/21 -1/21 5/42 5/42 5/42 5/42 5/42 5/42 5/42 5/42 -5/21] ! [ -1/7 1/42 -1/7 -1/7 1/42 -1/7 5/42 5/42 5/42 5/42 -1/21 -1/21 -1/21 -1/21 5/42 5/42 5/42 5/42 -5/21] ! [ -1/7 -1/7 1/42 -1/7 -1/7 1/42 5/42 5/42 5/42 5/42 5/42 5/42 5/42 5/42 -1/21 -1/21 -1/21 -1/21 -5/21] ! [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/4 -1/4 -1/4 1/4 0] ! [ 0 0 0 0 0 0 1/4 -1/4 -1/4 1/4 0 0 0 0 0 0 0 0 0] ! [ 0 0 0 0 0 0 0 0 0 0 1/4 -1/4 -1/4 1/4 0 0 0 0 0] ! ! ****************************************************************************** ! pure function mus_interpolate_linear3D_leastSq( srcMom, targetCoord, LSFmat, & & nSources, nVals ) result(phi) ! --------------------------------------------------------------------------- !> number of quantities to interpolation integer, intent(in) :: nVals !> Number of source elements integer, intent(in) :: nSources !> source values of the momentum on the square corners real(kind=rk), intent(in) :: srcMom(nVals, nSources) !> interpolation location within the square real(kind=rk), intent(in) :: targetCoord(3) !> matrix for least square fit type(tem_matrix_type), intent(in) :: LSFmat !> interpolated value real(kind=rk) :: phi( nVals ) ! --------------------------------------------------------------------------- real(kind=rk) :: a(4) ! Coefficients integer :: iVal ! --------------------------------------------------------------------------- ! We extract momentum information completely on the view of the source ! coordinate system ! Set the right hand side of the equation system ! Solve the problem, where b = rhs, x = coefficients ! A*x = b ! overdetermined, solve the least Square fit problem ! (A^T)A*x = (A^T)b ! x = ((A^T)A)^-1*(A^T)b ! Solve linear system of equation with inverted matrix do iVal = 1, nVals a(:) = matmul( LSFmat%A, srcMom(iVal, :) ) ! Evaluate the bubble function with the above calculated coefficients ! m_pi(x) = a1+a2*xcoord+a3*ycoord+a4*xcoord*xcoord+a5*ycoord*ycoord+a6*xcoord*ycoord; phi( iVal ) = a( 1) & & + a( 2)*targetCoord(c_x) & & + a( 3)*targetCoord(c_y) & & + a( 4)*targetCoord(c_z) enddo end function mus_interpolate_linear3D_leastSq ! ****************************************************************************** ! end module mus_interpolate_linear_module ! ****************************************************************************** !