! Copyright (c) 2022 Gregorio Gerardo Spinelli <gregoriogerardo.spinelli@dlr.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, ! this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF SIEGEN “AS IS” AND ANY EXPRESS ! OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ! OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ! IN NO EVENT SHALL UNIVERSITY OF SIEGEN OR CONTRIBUTORS BE LIABLE FOR ANY ! DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ! ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! **************************************************************************** ! !> author: Gregorio Gerardo Spinelli !! This module provides the definitions of M and Minv for !! MRT advection relaxation scheme for all stencils. !! !! The weighted MRT (D3Q27) is based on the following paper !! Abbas Fakhari, Diogo Bolster, Li-Shi Luo !! "A weighted multiple-relaxation-time lattice Boltzmann method for multiphase !! flows and its application to partial coalescence cascades" !! Journal of Computational Physics, 2017 !! !! The MRT (D3Q19) implementation here is taken from:\n !! J. Toelke, S. Freudiger, and M. Krafczyk, !! "An adaptive scheme using hierarchical grids for lattice Boltzmann !! multi-phase flow simulations," Comput. Fluids, vol. 35, pp. 820–830, !! 2006. \n module mus_mrtInit_module ! include treelm modules use env_module, only: rk use tem_param_module, only: div2_27, div2_9, div1_9, div1_18, div1_54, & & div1_4, div1_6, div1_36, div1_12, div1_108, & & div1_48, div1_72, div1_216, div8_27, div4_9, & & div1_27, div1_24, div1_8, div1_2, div1_3, & & div1_16 implicit none private public :: check_mrt_matrix_d3q19 public :: check_mrt_matrix_d3q27 !============================================================================= ! D3Q19 flow model !============================================================================= ! D3Q19 MRT pdf -> moment transformation matrix ! How to use: ! do iDir = 1, QQ ! moment(iDir) = sum( PDF(:) * MMtrD3Q19(iDir,:) ) ! end do ! W S B E N T BS TS BN TN BW BE TW TE SW NW SE NE 0 real(kind=rk), dimension(19,19),parameter,public :: MMtrD3Q19 = & reshape((/ & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, -1._rk, & -2._rk, -2._rk, -2._rk, -2._rk, -2._rk, -2._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & -1._rk, 0._rk, 0._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, & & 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & 2._rk, 0._rk, 0._rk, -2._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, & & 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & 0._rk, -1._rk, 0._rk, 0._rk, 1._rk, 0._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, -1._rk, 1._rk, 0._rk, & 0._rk, 2._rk, 0._rk, 0._rk, -2._rk, 0._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, -1._rk, 1._rk, 0._rk, & 0._rk, 0._rk, -1._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, & &-1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & 0._rk, 0._rk, 2._rk, 0._rk, 0._rk, -2._rk, -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, & &-1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & 2._rk, -1._rk, -1._rk, 2._rk, -1._rk, -1._rk, -2._rk, -2._rk, -2._rk, -2._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, & -2._rk, 1._rk, 1._rk, -2._rk, 1._rk, 1._rk, -2._rk, -2._rk, -2._rk, -2._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, & 0._rk, 1._rk, -1._rk, 0._rk, 1._rk, -1._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, & &-1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, & 0._rk, -1._rk, 1._rk, 0._rk, -1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, & &-1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, -1._rk, 1._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, -1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, & &-1._rk, -1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, & &-1._rk, 1._rk, -1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, & &-1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk & /),(/19,19/), order=(/ 2,1 /) ) real(kind=rk), dimension(19,19),parameter,public :: MMivD3Q19 = & reshape((/ & div1_18, 0._rk, -div1_18, -div1_6, div1_6, 0._rk, 0._rk, 0._rk, 0._rk, div1_12, -div1_12, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & div1_18, 0._rk, -div1_18, 0._rk, 0._rk, -div1_6, div1_6, 0._rk, 0._rk, -div1_24, div1_24, & div1_8, -div1_8, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & div1_18, 0._rk, -div1_18, 0._rk, 0._rk, 0._rk, 0._rk, -div1_6, div1_6, -div1_24, div1_24, & -div1_8, div1_8, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & div1_18, 0._rk, -div1_18, div1_6, -div1_6, 0._rk, 0._rk, 0._rk, 0._rk, div1_12, -div1_12, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & div1_18, 0._rk, -div1_18, 0._rk, 0._rk, div1_6, -div1_6, 0._rk, 0._rk, -div1_24, div1_24, & div1_8, -div1_8, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & div1_18, 0._rk, -div1_18, 0._rk, 0._rk, 0._rk, 0._rk, div1_6, -div1_6, -div1_24, div1_24, & -div1_8, div1_8, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & div1_36, div1_24, div1_72, 0._rk, 0._rk, -div1_12, -div1_24, -div1_12, -div1_24, -div1_24, -div1_24, & 0._rk, 0._rk, 0._rk, div1_4, 0._rk, 0._rk, -div1_8, div1_8, & div1_36, div1_24, div1_72, 0._rk, 0._rk, -div1_12, -div1_24, div1_12, div1_24, -div1_24, -div1_24, & 0._rk, 0._rk, 0._rk, -div1_4, 0._rk, 0._rk, -div1_8, -div1_8, & div1_36, div1_24, div1_72, 0._rk, 0._rk, div1_12, div1_24, -div1_12, -div1_24, -div1_24, -div1_24, & 0._rk, 0._rk, 0._rk, -div1_4, 0._rk, 0._rk, div1_8, div1_8, & div1_36, div1_24, div1_72, 0._rk, 0._rk, div1_12, div1_24, div1_12, div1_24, -div1_24, -div1_24, & 0._rk, 0._rk, 0._rk, div1_4, 0._rk, 0._rk, div1_8, -div1_8, & div1_36, div1_24, div1_72, -div1_12, -div1_24, 0._rk, 0._rk, -div1_12, -div1_24, div1_48, div1_48, & -div1_16, -div1_16, 0._rk, 0._rk, div1_4, div1_8, 0._rk, -div1_8, & div1_36, div1_24, div1_72, div1_12, div1_24, 0._rk, 0._rk, -div1_12, -div1_24, div1_48, div1_48, & -div1_16, -div1_16, 0._rk, 0._rk, -div1_4, -div1_8, 0._rk, -div1_8, & div1_36, div1_24, div1_72, -div1_12, -div1_24, 0._rk, 0._rk, div1_12, div1_24, div1_48, div1_48, & -div1_16, -div1_16, 0._rk, 0._rk, -div1_4, div1_8, 0._rk, div1_8, & div1_36, div1_24, div1_72, div1_12, div1_24, 0._rk, 0._rk, div1_12, div1_24, div1_48, div1_48, & -div1_16, -div1_16, 0._rk, 0._rk, div1_4, -div1_8, 0._rk, div1_8, & div1_36, div1_24, div1_72, -div1_12, -div1_24, -div1_12, -div1_24, 0._rk, 0._rk, div1_48, div1_48, & div1_16, div1_16, div1_4, 0._rk, 0._rk, -div1_8, div1_8, 0._rk, & div1_36, div1_24, div1_72, -div1_12, -div1_24, div1_12, div1_24, 0._rk, 0._rk, div1_48, div1_48, & div1_16, div1_16, -div1_4, 0._rk, 0._rk, -div1_8, -div1_8, 0._rk, & div1_36, div1_24, div1_72, div1_12, div1_24, -div1_12, -div1_24, 0._rk, 0._rk, div1_48, div1_48, & div1_16, div1_16, -div1_4, 0._rk, 0._rk, div1_8, div1_8, 0._rk, & div1_36, div1_24, div1_72, div1_12, div1_24, div1_12, div1_24, 0._rk, 0._rk, div1_48, div1_48, & div1_16, div1_16, div1_4, 0._rk, 0._rk, div1_8, -div1_8, 0._rk, & div1_3, -div1_2, div1_6, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk & /),(/19,19/), order=(/ 2,1 /) ) !============================================================================= ! D3Q27 flow model !============================================================================= ! D3Q27 WMRT pdf -> moment transformation matrix ! How to use: ! do iDir = 1, QQ ! moment(iDir) = sum( PDF(:) * WMMtrD3Q27(iDir,:) ) ! end do ! W S B E N T BS TS BN TN BW BE TW ! TE SW NW SE NE BSW TSW BNW TNW BSE TSE BNE TNE 0 real(kind=rk), dimension(27,27), parameter, public :: WMMtrD3Q27 = & & reshape((/ & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & & -1._rk, 0._rk, 0._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, -1._rk, 1._rk, & & -1._rk, -1._rk, 1._rk, 1._rk, -1._rk, -1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, & & 0._rk, -1._rk, 0._rk, 0._rk, 1._rk, 0._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, -1._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, & & -1._rk, -1._rk, 1._rk, 1._rk, 1._rk, -1._rk, -1._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, -1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, -1._rk, 1._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, -1._rk, 1._rk, 0._rk, & & 2._rk, -1._rk, -1._rk, 2._rk, -1._rk, -1._rk, -2._rk, -2._rk, -2._rk, -2._rk, 1._rk, 1._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 1._rk, -1._rk, 0._rk, 1._rk, -1._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, -1._rk, -1._rk, -1._rk, & & 1._rk, 1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, 1._rk, & & 1._rk, 1._rk, 1._rk, 2._rk, 2._rk, 2._rk, 2._rk, 2._rk, 2._rk, 2._rk, 2._rk, -1._rk, & & 2._rk, 0._rk, 0._rk, -2._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, -1._rk, 1._rk, & & -1._rk, -1._rk, 1._rk, 1._rk, -4._rk, -4._rk, -4._rk, -4._rk, 4._rk, 4._rk, 4._rk, 4._rk, 0._rk, & & 0._rk, 2._rk, 0._rk, 0._rk, -2._rk, 0._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & -1._rk, 1._rk, -1._rk, 1._rk, -4._rk, -4._rk, 4._rk, 4._rk, -4._rk, -4._rk, 4._rk, 4._rk, 0._rk, & & 0._rk, 0._rk, 2._rk, 0._rk, 0._rk, -2._rk, -1._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 1._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, -4._rk, 4._rk, -4._rk, 4._rk, -4._rk, 4._rk, -4._rk, 4._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, & & -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, -1._rk, 1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 1._rk, -1._rk, 1._rk, -1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, -1._rk, 1._rk, 1._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, 1._rk, -1._rk, 1._rk, -1._rk, -1._rk, 1._rk, 0._rk, & & -1._rk, -1._rk, -1._rk, -1._rk, -1._rk, -1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 4._rk, 4._rk, 4._rk, 4._rk, 4._rk, 4._rk, 4._rk, 4._rk, 1._rk, & & -2._rk, 1._rk, 1._rk, -2._rk, 1._rk, 1._rk, -4._rk, -4._rk, -4._rk, -4._rk, 2._rk, 2._rk, 2._rk, 2._rk, & & 2._rk, 2._rk, 2._rk, 2._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, -1._rk, 1._rk, 0._rk, -1._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, -2._rk, -2._rk, -2._rk, -2._rk, & & 2._rk, 2._rk, 2._rk, 2._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & -1._rk, 1._rk, 1._rk, -1._rk, 2._rk, 2._rk, -2._rk, -2._rk, -2._rk, -2._rk, 2._rk, 2._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, 1._rk, -1._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 2._rk, -2._rk, -2._rk, 2._rk, 2._rk, -2._rk, -2._rk, 2._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -1._rk, 1._rk, 1._rk, -1._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, 2._rk, -2._rk, 2._rk, -2._rk, -2._rk, 2._rk, -2._rk, 2._rk, 0._rk, & & -1._rk, 0._rk, 0._rk, 1._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 2._rk, -2._rk, 2._rk, -2._rk, & & 2._rk, 2._rk, -2._rk, -2._rk, -4._rk, -4._rk, -4._rk, -4._rk, 4._rk, 4._rk, 4._rk, 4._rk, 0._rk, & & 0._rk, -1._rk, 0._rk, 0._rk, 1._rk, 0._rk, 2._rk, 2._rk, -2._rk, -2._rk, 0._rk, 0._rk, 0._rk, 0._rk, & & 2._rk, -2._rk, 2._rk, -2._rk, -4._rk, -4._rk, 4._rk, 4._rk, -4._rk, -4._rk, 4._rk, 4._rk, 0._rk, & & 0._rk, 0._rk, -1._rk, 0._rk, 0._rk, 1._rk, 2._rk, -2._rk, 2._rk, -2._rk, 2._rk, 2._rk, -2._rk, -2._rk, & & 0._rk, 0._rk, 0._rk, 0._rk, -4._rk, 4._rk, -4._rk, 4._rk, -4._rk, 4._rk, -4._rk, 4._rk, 0._rk, & & 2._rk, 2._rk, 2._rk, 2._rk, 2._rk, 2._rk, -4._rk, -4._rk, -4._rk, -4._rk, -4._rk, -4._rk, -4._rk, & & -4._rk, -4._rk, -4._rk, -4._rk, -4._rk, 8._rk, 8._rk, 8._rk, 8._rk, 8._rk, 8._rk, 8._rk, 8._rk, -1._rk & & /),(/27,27/), order=(/ 2,1 /) ) ! D3Q27 MRT moment --> PDF transformation matrix ! How to use: ! do iDir = 1, QQ ! fneq(iDir) = sum( WMMIvD3Q27(iDir,:) * mneq(:) ) ! end do real(kind=rk), dimension(27,27),parameter,public :: WMMIvD3Q27 = & & reshape((/ & & div2_27, -div2_9, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, div1_9, 0._rk, 0._rk, div1_9, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -div1_18, -div1_18, 0._rk, 0._rk, 0._rk, 0._rk, -div1_18, 0._rk, 0._rk, div1_54, & & div2_27, 0._rk, -div2_9, 0._rk, 0._rk, 0._rk, 0._rk, -div1_18, div1_6, 0._rk, 0._rk, div1_9, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -div1_18, div1_36, -div1_12, 0._rk, 0._rk, 0._rk, 0._rk, -div1_18, 0._rk, div1_54, & & div2_27, 0._rk, 0._rk, -div2_9, 0._rk, 0._rk, 0._rk, -div1_18, -div1_6, 0._rk, 0._rk, 0._rk, div1_9, 0._rk, & & 0._rk, 0._rk, 0._rk, -div1_18, div1_36, div1_12, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -div1_18, div1_54, & & div2_27, div2_9, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, div1_9, 0._rk, 0._rk, -div1_9, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -div1_18, -div1_18, 0._rk, 0._rk, 0._rk, 0._rk, div1_18, 0._rk, 0._rk, div1_54, & & div2_27, 0._rk, div2_9, 0._rk, 0._rk, 0._rk, 0._rk, -div1_18, div1_6, 0._rk, 0._rk, -div1_9, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, -div1_18, div1_36, -div1_12, 0._rk, 0._rk, 0._rk, 0._rk, div1_18, 0._rk, div1_54, & & div2_27, 0._rk, 0._rk, div2_9, 0._rk, 0._rk, 0._rk, -div1_18, -div1_6, 0._rk, 0._rk, 0._rk, -div1_9, 0._rk, & & 0._rk, 0._rk, 0._rk, -div1_18, div1_36, div1_12, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, div1_18, div1_54, & & div1_54, 0._rk, -div1_18, -div1_18, 0._rk, div1_6, 0._rk, -div1_36, 0._rk, div1_36, 0._rk, -div1_72, & & -div1_72, 0._rk, -div1_8, div1_8, 0._rk, 0._rk, -div1_36, 0._rk, 0._rk, -div1_12, 0._rk, 0._rk, div1_36, & & div1_36, -div1_108, & & div1_54, 0._rk, -div1_18, div1_18, 0._rk, -div1_6, 0._rk, -div1_36, 0._rk, div1_36, 0._rk, -div1_72, & & div1_72, 0._rk, -div1_8, -div1_8, 0._rk, 0._rk, -div1_36, 0._rk, 0._rk, div1_12, 0._rk, 0._rk, div1_36, & & -div1_36, -div1_108, & & div1_54, 0._rk, div1_18, -div1_18, 0._rk, -div1_6, 0._rk, -div1_36, 0._rk, div1_36, 0._rk, div1_72, & & -div1_72, 0._rk, div1_8, div1_8, 0._rk, 0._rk, -div1_36, 0._rk, 0._rk, div1_12, 0._rk, 0._rk, -div1_36, & & div1_36, -div1_108, & & div1_54, 0._rk, div1_18, div1_18, 0._rk, div1_6, 0._rk, -div1_36, 0._rk, div1_36, 0._rk, div1_72, div1_72, & & 0._rk, div1_8, -div1_8, 0._rk, 0._rk, -div1_36, 0._rk, 0._rk, -div1_12, 0._rk, 0._rk, -div1_36, -div1_36, & & -div1_108, & & div1_54, -div1_18, 0._rk, -div1_18, 0._rk, 0._rk, div1_6, div1_72, -div1_24, div1_36, -div1_72, 0._rk, & & -div1_72, div1_8, 0._rk, -div1_8, 0._rk, 0._rk, div1_72, -div1_24, 0._rk, 0._rk, -div1_12, div1_36, & & 0._rk, div1_36, -div1_108, & & div1_54, div1_18, 0._rk, -div1_18, 0._rk, 0._rk, -div1_6, div1_72, -div1_24, div1_36, div1_72, 0._rk, & & -div1_72, -div1_8, 0._rk, -div1_8, 0._rk, 0._rk, div1_72, -div1_24, 0._rk, 0._rk, div1_12, -div1_36, & & 0._rk, div1_36, -div1_108, & & div1_54, -div1_18, 0._rk, div1_18, 0._rk, 0._rk, -div1_6, div1_72, -div1_24, div1_36, -div1_72, 0._rk, & & div1_72, div1_8, 0._rk, div1_8, 0._rk, 0._rk, div1_72, -div1_24, 0._rk, 0._rk, div1_12, div1_36, 0._rk, & & -div1_36, -div1_108, & & div1_54, div1_18, 0._rk, div1_18, 0._rk, 0._rk, div1_6, div1_72, -div1_24, div1_36, div1_72, 0._rk, & & div1_72, -div1_8, 0._rk, div1_8, 0._rk, 0._rk, div1_72, -div1_24, 0._rk, 0._rk, -div1_12, -div1_36, & & 0._rk, -div1_36, -div1_108, & & div1_54, -div1_18, -div1_18, 0._rk, div1_6, 0._rk, 0._rk, div1_72, div1_24, div1_36, -div1_72, -div1_72, & & 0._rk, -div1_8, div1_8, 0._rk, 0._rk, 0._rk, div1_72, div1_24, -div1_12, 0._rk, 0._rk, div1_36, div1_36, & & 0._rk, -div1_108, & & div1_54, -div1_18, div1_18, 0._rk, -div1_6, 0._rk, 0._rk, div1_72, div1_24, div1_36, -div1_72, div1_72, & & 0._rk, -div1_8, -div1_8, 0._rk, 0._rk, 0._rk, div1_72, div1_24, div1_12, 0._rk, 0._rk, div1_36, -div1_36, & & 0._rk, -div1_108, & & div1_54, div1_18, -div1_18, 0._rk, -div1_6, 0._rk, 0._rk, div1_72, div1_24, div1_36, div1_72, -div1_72, & & 0._rk, div1_8, div1_8, 0._rk, 0._rk, 0._rk, div1_72, div1_24, div1_12, 0._rk, 0._rk, -div1_36, div1_36, & & 0._rk, -div1_108, & & div1_54, div1_18, div1_18, 0._rk, div1_6, 0._rk, 0._rk, div1_72, div1_24, div1_36, div1_72, div1_72, 0._rk, & & div1_8, -div1_8, 0._rk, 0._rk, 0._rk, div1_72, div1_24, -div1_12, 0._rk, 0._rk, -div1_36, -div1_36, & & 0._rk, -div1_108, & & div1_216, -div1_72, -div1_72, -div1_72, div1_24, div1_24, div1_24, 0._rk, 0._rk, div1_72, -div1_72, & & -div1_72, -div1_72, 0._rk, 0._rk, 0._rk, -div1_8, div1_72, 0._rk, 0._rk, div1_24, div1_24, div1_24, & & -div1_72, -div1_72, -div1_72, div1_216, & & div1_216, -div1_72, -div1_72, div1_72, div1_24, -div1_24, -div1_24, 0._rk, 0._rk, div1_72, -div1_72, & & -div1_72, div1_72, 0._rk, 0._rk, 0._rk, div1_8, div1_72, 0._rk, 0._rk, div1_24, -div1_24, -div1_24, & & -div1_72, -div1_72, div1_72, div1_216, & & div1_216, -div1_72, div1_72, -div1_72, -div1_24, -div1_24, div1_24, 0._rk, 0._rk, div1_72, -div1_72, & & div1_72, -div1_72, 0._rk, 0._rk, 0._rk, div1_8, div1_72, 0._rk, 0._rk, -div1_24, -div1_24, div1_24, & & -div1_72, div1_72, -div1_72, div1_216, & & div1_216, -div1_72, div1_72, div1_72, -div1_24, div1_24, -div1_24, 0._rk, 0._rk, div1_72, -div1_72, & & div1_72, div1_72, 0._rk, 0._rk, 0._rk, -div1_8, div1_72, 0._rk, 0._rk, -div1_24, div1_24, -div1_24, & & -div1_72, div1_72, div1_72, div1_216, & & div1_216, div1_72, -div1_72, -div1_72, -div1_24, div1_24, -div1_24, 0._rk, 0._rk, div1_72, div1_72, & & -div1_72, -div1_72, 0._rk, 0._rk, 0._rk, div1_8, div1_72, 0._rk, 0._rk, -div1_24, div1_24, -div1_24, & & div1_72, -div1_72, -div1_72, div1_216, & & div1_216, div1_72, -div1_72, div1_72, -div1_24, -div1_24, div1_24, 0._rk, 0._rk, div1_72, div1_72, & & -div1_72, div1_72, 0._rk, 0._rk, 0._rk, -div1_8, div1_72, 0._rk, 0._rk, -div1_24, -div1_24, div1_24, & & div1_72, -div1_72, div1_72, div1_216, & & div1_216, div1_72, div1_72, -div1_72, div1_24, -div1_24, -div1_24, 0._rk, 0._rk, div1_72, div1_72, div1_72, & & -div1_72, 0._rk, 0._rk, 0._rk, -div1_8, div1_72, 0._rk, 0._rk, div1_24, -div1_24, -div1_24, div1_72, & & div1_72, -div1_72, div1_216, & & div1_216, div1_72, div1_72, div1_72, div1_24, div1_24, div1_24, 0._rk, 0._rk, div1_72, div1_72, div1_72, & & div1_72, 0._rk, 0._rk, 0._rk, div1_8, div1_72, 0._rk, 0._rk, div1_24, div1_24, div1_24, div1_72, div1_72, & & div1_72, div1_216, & & div8_27, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -div4_9, 0._rk, 0._rk, 0._rk, 0._rk, & & 0._rk, 0._rk, 0._rk, div2_9, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, 0._rk, -div1_27 & & /),(/27,27/), order=(/ 2,1 /) ) contains ! **************************************************************************** ! !> Unoptimized explicit implementation !! !! This subroutine interface must match the abstract interface definition !! [[kernel]] in scheme/[[mus_scheme_type_module]].f90 in order to be callable !! via [[mus_scheme_type:compute]] function pointer. function check_mrt_matrix_d3q19() result (test) logical :: test ! --------------------------------------------------------------------------- integer :: iDir real(kind=rk) :: M_Minv ! --------------------------------------------------------------------------- test = .false. ! check whether the M and Minv matrices are consistent. ! M * M_inv = I do iDir = 1, 19 M_Minv = sum( MMtrD3Q19(iDir,:)*MMIvD3Q19(:,iDir) ) write(*,*) "row = ", iDir, "; M_Sum = ", sum( MMtrD3Q19(iDir,:) ), "& &; MInv_Sum = ", sum( MMIvD3Q19(iDir,:) ), "& &; M_dot_M_inv = ", M_Minv if ( abs(M_Minv - 1._rk) > 1e-15 ) then write(*,*) 'M * M_inv = ', M_Minv, ' along direction ', iDir test = .true. endif end do end function check_mrt_matrix_d3q19 ! **************************************************************************** ! ! **************************************************************************** ! !> Unoptimized explicit implementation !! !! This subroutine interface must match the abstract interface definition !! [[kernel]] in scheme/[[mus_scheme_type_module]].f90 in order to be callable !! via [[mus_scheme_type:compute]] function pointer. function check_mrt_matrix_d3q27() result (test) logical :: test ! --------------------------------------------------------------------------- integer :: iDir real(kind=rk) :: M_Minv ! --------------------------------------------------------------------------- test = .false. ! check whether the M and Minv matrices are consistent. ! M * M_inv = I do iDir = 1, 27 M_Minv = sum( WMMtrD3Q27(iDir,:)*WMMIvD3Q27(:,iDir) ) write(*,*) "row = ", iDir, "; M_Sum = ", sum( WMMtrD3Q27(iDir,:) ), "& &; MInv_Sum = ", sum( WMMIvD3Q27(iDir,:) ), "& &; M_dot_M_inv = ", M_Minv if ( abs(M_Minv - 1._rk) > 1e-15 ) then write(*,*) 'M * M_inv = ', M_Minv, ' along direction ', iDir test = .true. endif end do end function check_mrt_matrix_d3q27 ! **************************************************************************** ! end module mus_mrtInit_module