! Copyright (c) 2017 Sindhuja Budaraju <nagasai.budaraju@student.uni-siegen.de> ! Copyright (c) 2017 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2017-2020 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2017 Raphael Haupt <raphael.haupt@uni-siegen.de> ! Copyright (c) 2019-2020 Peter Vitt <peter.vitt2@uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, ! this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF SIEGEN “AS IS” AND ANY EXPRESS ! OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ! OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ! IN NO EVENT SHALL UNIVERSITY OF SIEGEN OR CONTRIBUTORS BE LIABLE FOR ANY ! DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ! ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ****************************************************************************** ! !> author: sindhuja !! This module provides the MUSUBI specific functions for calculating !! macroscopic quantities from the state variables. !! The depending common interface between MUSUBI and ATELES is defined in the !! tem_derived_module. The functionality for accessing a variable from the state !! and evaluating a lua function are also provided in the tem_derived module. !! A Novel lattice boltzmann model for poisson equation !! author> Zhenhua Chai , Baochang Shi !! A Coupled Lattice Boltzmann method to solve Nernst -Planck Model for !! simulating Electro-Osmotic Flows ! Copyright (c) 2011-2013 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2011 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2011 Konstantin Kleinheinz <k.kleinheinz@grs-sim.de> ! Copyright (c) 2011-2012 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012, 2014-2016 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2012 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2013-2015, 2019 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, ! this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF SIEGEN “AS IS” AND ANY EXPRESS ! OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ! OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ! IN NO EVENT SHALL UNIVERSITY OF SIEGEN OR CONTRIBUTORS BE LIABLE FOR ANY ! DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ! ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! Copyright (c) 2013 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2013-2014 Nikhil Anand <nikhil.anand@uni-siegen.de> ! Copyright (c) 2014, 2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2015, 2018, 2020 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. !-------------------------------------------- ! A O S - Array of structures layout new !------------------------------------------- ! Access to get_point value output ! Access to get_element value output module mus_derQuanPoisson_module use iso_c_binding, only: c_loc, c_ptr, c_f_pointer ! include treelm modules use tem_param_module, only: cs2, cs2inv use env_module, only: rk, labelLen use tem_variable_module, only: tem_variable_type use tem_stencil_module, only: tem_stencilHeader_type use tem_topology_module, only: tem_levelOf use tem_time_module, only: tem_time_type use treelmesh_module, only: treelmesh_type use tem_logging_module, only: logUnit use tem_varSys_module, only: tem_varSys_type, tem_varSys_op_type, & & tem_varSys_append_derVar, & & tem_varSys_append_auxFieldVar, & & tem_varSys_proc_point, & & tem_varSys_proc_element, & & tem_varSys_proc_setParams, & & tem_varSys_proc_getParams, & & tem_varSys_proc_setupIndices, & & tem_varSys_proc_getValOfIndex, & & tem_varSys_getPoint_dummy, & & tem_varSys_getElement_dummy, & & tem_varSys_setupIndices_dummy, & & tem_varSys_getValOfIndex_dummy, & & tem_varSys_setParams_dummy, & & tem_varSys_getParams_dummy use tem_aux_module, only: tem_abort use tem_debug_module, only: dbgUnit use tem_grow_array_module, only: grw_labelarray_type, append ! include musubi modules use mus_source_type_module, only: mus_source_op_type use mus_scheme_header_module, only: mus_scheme_header_type use mus_varSys_module, only: mus_varSys_data_type, & & mus_varSys_solverData_type, & & mus_get_new_solver_ptr, & & mus_deriveVar_ForPoint, & & mus_generic_varFromPDF_fromIndex, & & mus_generic_fromPDF_forElement, & & mus_derive_fromPDF use mus_stateVar_module, only: mus_stateVar_Fetch_now_fromIndex, & & mus_accessVar_setupIndices, & & mus_access_stateFetch_now_forElement use mus_auxFieldVar_module, only: mus_access_auxFieldVar_forElement, & & mus_auxFieldVar_forPoint, & & mus_auxFieldVar_fromIndex use mus_scheme_type_module, only: mus_scheme_type use mus_scheme_layout_module, only: mus_scheme_layout_type use mus_field_prop_module, only: mus_field_prop_type use mus_operation_var_module, only: mus_opVar_setupIndices use mus_derivedQuantities_module2, only: convPrePost use mus_derVarPos_module, only: mus_derVarPos_type use mus_physics_module, only: mus_convertFac_type use mus_scheme_derived_quantities_module, only: mus_scheme_derived_quantities_type implicit none private public :: mus_append_derVar_poisson public :: deriveAuxPoisson_fromState public :: deriveEquilPoisson_fromAux public :: applySrc_chargeDensity_2ndOrd public :: applySrc_chargeDensity_1stOrd public :: deriveSrc_chargeDensity contains ! **************************************************************************** ! !> subroutine to add derive variables for weakly compressible PB !! (schemekind = 'poisson') to the varsys. !! A Coupled Lattice Boltzmann Method to Solve Nernst-Planck Model !! for Simulating Electro-Osmotic flows !! author> Xuguang yang subroutine mus_append_derVar_poisson( varSys, solverData, fldLabel, & & derVarName, schemeKind, stencil ) ! --------------------------------------------------------------------------- !> global variable system type(tem_varSys_type), intent(inout) :: varSys !> Contains pointer to solver data types type(mus_varSys_solverData_type), target, intent(in) :: solverData !> compute stencil defintion type(tem_stencilHeader_type), intent(in) :: stencil !> array of field label prefix. Size=nFields character(len=*), intent(in) :: fldLabel !> array of derive physical variables type(grw_labelarray_type), intent(inout) :: derVarName !> scheme kind character(len=*), intent(in) :: schemeKind ! --------------------------------------------------------------------------- ! number of derive variables integer :: nDerVars, iVar, nComponents, addedPos, iIn logical :: wasAdded character(len=labelLen), allocatable :: input_varname(:) character(len=labelLen) :: varName procedure(tem_varSys_proc_point), pointer :: get_point => NULL() procedure(tem_varSys_proc_element), pointer :: get_element => NULL() procedure(tem_varSys_proc_setParams), pointer :: set_params => null() procedure(tem_varSys_proc_getParams), pointer :: get_params => null() procedure(tem_varSys_proc_setupIndices), pointer :: & & setup_indices => null() procedure(tem_varSys_proc_getValOfIndex), pointer :: & & get_valOfIndex => null() type(c_ptr) :: method_data character(len=labelLen), allocatable :: derVarName_loc(:) ! --------------------------------------------------------------------------- nullify(get_point, get_element, set_params, get_params, setup_indices, & & get_valOfIndex) if (trim(schemeKind) == 'poisson') then ! For poisson equation, chargedensity variable is defined as source ! term nDerVars = 2 allocate(derVarName_loc(nDerVars)) derVarName_loc = [ 'fetch_pdf_now ', & & 'electric_field '] else ! For poisson_boltzmann_linear and poisson_boltzmann_nonlinear nDerVars = 3 allocate(derVarName_loc(nDerVars)) derVarName_loc = [ 'fetch_pdf_now ', & & 'charge_density ', 'electric_field '] end if do iVar = 1, nDerVars call append(derVarName, derVarName_loc(iVar)) ! set default pointers, overwrite if neccessary get_element => tem_varSys_getElement_dummy get_point => mus_deriveVar_ForPoint setup_indices => mus_opVar_setupIndices get_valOfIndex => tem_varSys_getValOfIndex_dummy method_data = mus_get_new_solver_ptr(solverData) set_params => tem_varSys_setParams_dummy get_params => tem_varSys_getParams_dummy select case(trim(adjustl(derVarName_loc(iVar)))) case ('fetch_pdf_now') get_element => mus_access_stateFetch_now_forElement get_valOfIndex => mus_stateVar_Fetch_now_fromIndex setup_indices => mus_accessVar_setupIndices nComponents = stencil%QQ allocate(input_varname(1)) input_varname(1) = 'pdf' case ('electric_field') get_element => deriveElectricfield_forElement get_valOfIndex => deriveElectricfield_fromIndex nComponents = 3 allocate(input_varname(1)) input_varname(1) = 'pdf' case ('charge_density_boltzmann') ! Charge density from potential using boltzmann approximation get_element => deriveChargeDensityBoltzAppr_forElement get_valOfIndex => deriveChargeDensityBoltzAppr_fromIndex nComponents = 1 allocate(input_varname(1)) input_varname(1) = 'potential' case default write(logUnit(1),*) 'WARNING: Unknown variable: '//& & trim(derVarName_loc(iVar)) cycle !go to next variable end select ! update variable names with field label varname = trim(fldLabel)//trim(adjustl(derVarName_loc(iVar))) do iIn = 1, size(input_varname) input_varname(iIn) = trim(fldLabel)//trim(input_varname(iIn)) end do ! append variable to varSys call tem_varSys_append_derVar( me = varSys, & & varName = trim(varname), & & nComponents = nComponents, & & input_varname = input_varname, & & method_data = method_data, & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = addedPos, & & wasAdded = wasAdded ) if (wasAdded) then write(logUnit(10),*) ' Appended variable:'//trim(varname) else if (addedpos < 1) then write(logUnit(1),*) 'Error: variable '//trim(varname)// & & ' is not added to variable system' end if deallocate(input_varname) end do end subroutine mus_append_derVar_poisson ! ************************************************************************** ! ! ****************************************************************************** ! ! Subroutines with common interface for the function pointers ! ! ****************************************************************************** ! ! **************************************************************************** ! !> This routine computes auxField 'potential' from state array !! !! This subroutine's interface must match the abstract interface definition !! [[derive_auxFromState]] in derived/[[mus_derVarPos_module]].f90 in order to !! be callable via [[mus_derVarPos_type:auxFieldFromState]] function pointer. subroutine deriveAuxPoisson_fromState( derVarPos, state, neigh, iField, & & nElems, nSize, iLevel, stencil, & & varSys, auxField, quantities ) ! -------------------------------------------------------------------- ! !> Position of derive variable in variable system class(mus_derVarPos_type), intent(in) :: derVarPos !> Array of state !! n * layout%stencil(1)%QQ * nFields real(kind=rk), intent(in) :: state(:) !> connectivity vector integer, intent(in) :: neigh(:) !> Current field integer, intent(in) :: iField !> number of elements integer, intent(in) :: nElems !> number of elements in state array integer, intent(in) :: nSize !> current level integer, intent(in) :: iLevel !> stencil header contains discrete velocity vectors type(tem_stencilHeader_type), intent(in) :: stencil !> variable system which is required to access fieldProp !! information via variable method data c_ptr type(tem_varSys_type), intent(in) :: varSys !> Class that contains pointers to the proper derived quantities functions type(mus_scheme_derived_quantities_type), intent(in) :: quantities !> Output of this routine !! Size: nElems*nAuxScalars real(kind=rk), intent(inout) :: auxField(:) ! -------------------------------------------------------------------- ! integer :: iElem, iDir real(kind=rk) :: pdf( stencil%QQ ) ! ------------------------------------------------------------------------ ! !NEC$ ivdep do iElem = 1, nElems !NEC$ shortloop do iDir = 1, stencil%QQ pdf(iDir) = state( & & ( ielem-1)* varsys%nscalars+idir+( 1-1)* stencil%qq) end do ! element offset is not required because poisson equation has only ! one aux scalar 'potential' auxField(iElem) = sum(pdf) end do end subroutine deriveAuxPoisson_fromState ! **************************************************************************** ! ! ************************************************************************** ! !> This routine computes equilbrium from auxField !! !! This subroutine's interface must match the abstract interface definition !! [[derive_equilFromAux]] in derived/[[mus_derVarPos_module]].f90 in order to !! be callable via [[mus_derVarPos_type:equilFromAux]] function pointer. subroutine deriveEquilPoisson_fromAux( derVarPos, auxField, iField, nElems, & & varSys, layout, fEq ) ! -------------------------------------------------------------------- ! !> Position of derive variable in variable system class(mus_derVarPos_type), intent(in) :: derVarPos !> Array of auxField. !! Single species: dens_1, vel_1, dens_2, vel_2, .. dens_n, vel_n !! multi-species: dens_1_sp1, vel_1_spc1, dens_1_sp2, vel_1_spc2, !! dens_2_sp1, vel_2_spc2, dens_2_sp2, vel_2_spc2 ... !! dens_n_sp1, vel_n_sp1, dens_n_sp2, vel_n_spc2 !! Access: (iElem-1)*nAuxScalars + auxField_varPos real(kind=rk), intent(in) :: auxField(:) !> Current field integer, intent(in) :: iField !> number of elements integer, intent(in) :: nElems !> variable system which is required to access fieldProp !! information via variable method data c_ptr type(tem_varSys_type), intent(in) :: varSys !> scheme layout contains stencil definition and lattice weights type(mus_scheme_layout_type), intent(in) :: layout !> Output of this routine !! Dimension: n*QQ of res real(kind=rk), intent(out) :: fEq(:) ! -------------------------------------------------------------------- ! integer :: iElem, iDir ! ------------------------------------------------------------------------ ! !NEC$ ivdep do iElem = 1, nElems !NEC$ shortloop do iDir = 1, layout%fStencil%QQ ! element offset is not required for auxField because poisson equation ! has only one aux scalar 'potential' fEq((iElem-1)*layout%fStencil%QQ+iDir) = layout%weight(iDir) & & * auxField(iElem) end do end do end subroutine deriveEquilPoisson_fromAux ! ************************************************************************** ! ! ************************************************************************** ! !> Calculate the electric_field of a given pre-collision pdfs !! i.e fetch_pdf_now !! !! The interface has to comply to the abstract interface !! [[mus_varSys_module:mus_derive_fromPDF]]. !! recursive subroutine mus_deriveElectricField( fun, varsys, stencil, iLevel, & & posInState, pdf, res, nVals ) !> description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varsys_op_type), intent(in) :: fun !> the variable system to obtain the variable from. type(tem_varsys_type), intent(in) :: varsys !> fluid stencil defintion type(tem_stencilHeader_type), intent(in) :: stencil !> current Level integer, intent(in) :: iLevel !> Position of element in levelwise state array integer, intent(in) :: posInState(:) !> pdf array contains pre-collision using FETCH and nNow real(kind=rk), intent(in) :: pdf(:) !> results real(kind=rk), intent(out) :: res(:) !> nVals to get integer, intent(in) :: nVals ! --------------------------------------------------------------------------- integer :: iVal, iComp type(mus_varSys_data_type), pointer :: fPtr type(mus_scheme_type), pointer :: scheme integer :: nCompPDF real(kind=rk) :: pot, electric_prefactor, electric_field(3) real(kind=rk), allocatable :: pdfTmp(:) real(kind=rk) :: omega ! --------------------------------------------------------------------------- call C_F_POINTER( fun%method_Data, fPtr ) scheme => fPtr%solverData%scheme nCompPDF = varSys%method%val(fun%input_varPos(1))%nComponents allocate(pdfTmp(nCompPDF)) omega = fPtr%solverData%scheme%field(1)%fieldProp%poisson%omega electric_prefactor = ( omega * convPrePost(omega) ) / scheme%layout%cs**2 ! res is always AOS layout res = 0.0_rk do iVal = 1, nVals ! Calculate potential pot = sum( pdf( (iVal-1)*nCompPDF + 1: iVal*nCompPDF) ) ! Calculate nonequilibrium do iComp = 1, nCompPDF pdfTmp(iComp) = pdf( (iVal-1)*nCompPDF + iComp) end do ! Calculate electric_field by Multiply the difference with cxDir ! and additional pre-factor ! E = omega/cs2 * sum (cx * fPre) or ! E = omega/cs2/(1-omega) * sum (cx * fPost) electric_field(1) = sum( pdfTmp * scheme%layout%fStencil%cxDirRK(1,:) ) electric_field(2) = sum( pdfTmp * scheme%layout%fStencil%cxDirRK(2,:) ) electric_field(3) = sum( pdfTmp * scheme%layout%fStencil%cxDirRK(3,:) ) electric_field = electric_prefactor * electric_field ! Store electric field in result output res((iVal-1)*3+1) = electric_field(1) res((iVal-1)*3+2) = electric_field(2) res((iVal-1)*3+3) = electric_field(3) end do !iVal end subroutine mus_deriveElectricField ! ****************************************************************************** ! ! ************************************************************************** ! !> Calculate the electric field of a given set of elements (sum up all links). !! This routine is used to compute electric field for all scheme kinds !! !! The interface has to comply to the abstract interface !! [[tem_varSys_module:tem_varSys_proc_element]]. !! recursive subroutine deriveElectricfield_forElement(fun, varsys, elempos, & & time, tree, nElems, & & nDofs, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! !> Function pointer to perform specific operation. procedure(mus_derive_fromPDF), pointer :: fnCalcPtr ! -------------------------------------------------------------------- ! fnCalcPtr => mus_deriveElectricField call mus_generic_fromPDF_forElement( & & fun = fun, & & varSys = varSys, & & elempos = elempos, & & tree = tree, & & time = time, & & nVals = nElems, & & fnCalcPtr = fnCalcPtr, & & nDofs = nDofs, & & res = res ) end subroutine deriveElectricfield_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Calculate the electric field of a given set of elements (sum up all links). !! This routine is used to compute electric field for all scheme kinds !! !! The interface has to comply to the abstract interface !! [[tem_varSys_module:tem_varSys_proc_getValOfIndex]]. !! recursive subroutine deriveElectricfield_fromIndex(fun, varSys, time, & & iLevel, idx, idxLen, & & nVals, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! !> Function pointer to perform specific operation. procedure(mus_derive_fromPDF), pointer :: fnCalcPtr ! -------------------------------------------------------------------- ! fnCalcPtr => mus_deriveElectricField call mus_generic_varFromPDF_fromIndex( & & fun = fun, & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = idx, & & nVals = nVals, & & fnCalcPtr = fnCalcPtr, & & res = res ) end subroutine deriveElectricfield_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Calculate charge density from potential field using Boltzmann approximation !! !! The interface has to comply to the abstract interface !! [[tem_varSys_module:tem_varSys_proc_element]]. !! recursive subroutine deriveChargeDensityBoltzAppr_forElement( & & fun, varsys, elempos, time, tree, nElems, nDofs, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! integer :: iElem, iIon, potPos type(mus_varSys_data_type), pointer :: fPtr type(mus_field_prop_type), pointer :: fieldProp real(kind=rk) :: potential(nElems) real(kind=rk) :: fac, pot_fac, charge_dens ! -------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, fPtr ) fieldProp => fPtr%solverData%scheme%field(1)%fieldProp potPos = fun%input_varPos(1) call varSys%method%val(potPos)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = potential ) fac = fieldProp%poisson%PB%faradayLB & & / (fieldProp%poisson%PB%gasConst_R_LB * fieldProp%poisson%PB%temp ) ! res is always AOS layout res = 0.0_rk do iElem = 1, nElems pot_fac = fac * potential(iElem) charge_dens = 0.0_rk do iIon = 1, fieldProp%poisson%PB%nIons charge_dens = charge_dens + fieldProp%poisson%PB%moleDens0 & & * fieldProp%poisson%PB%faradayLB & & * fieldProp%poisson%PB%valence(iIon) & & * exp( - fieldProp%poisson%PB%valence(iIon) * pot_fac ) end do res(iElem) = charge_dens end do end subroutine deriveChargeDensityBoltzAppr_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Calculate charge density from potential field using Boltzmann approximation !! from given index !! !! The interface has to comply to the abstract interface !! [[tem_varSys_module:tem_varSys_proc_getValOfIndex]]. !! recursive subroutine deriveChargeDensityBoltzAppr_fromIndex( & & fun, varSys, time, iLevel, idx, idxLen, nVals, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! integer :: iVal, iIon, potPos type(mus_varSys_data_type), pointer :: fPtr type(mus_field_prop_type), pointer :: fieldProp real(kind=rk) :: potential(nVals) real(kind=rk) :: fac, pot_fac, charge_dens ! -------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, fPtr ) fieldProp => fPtr%solverData%scheme%field(1)%fieldProp potPos = fun%input_varPos(1) call varSys%method%val(potPos)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = fPtr%opData%input_pntIndex(1) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = potential ) fac = fieldProp%poisson%PB%faradayLB & & / (fieldProp%poisson%PB%gasConst_R_LB * fieldProp%poisson%PB%temp ) ! res is always AOS layout res = 0.0_rk do iVal = 1, nVals pot_fac = fac * potential(iVal) charge_dens = 0.0_rk do iIon = 1, fieldProp%poisson%PB%nIons charge_dens = charge_dens + fieldProp%poisson%PB%moleDens0 & & * fieldProp%poisson%PB%faradayLB & & * fieldProp%poisson%PB%valence(iIon) & & * exp( - fieldProp%poisson%PB%valence(iIon) * pot_fac ) end do res(iVal) = charge_dens end do end subroutine deriveChargeDensityBoltzAppr_fromIndex ! ************************************************************************** ! ! ****************************************************************************** ! !> Update state with source variable "ChargeDensity" with 2nd order !! integration of source Term. !! Refer to Appendix in PhD Thesis of K. Masilamani !! "Coupled Simulation Framework to Simulate Electrodialysis Process for !! !! $$ \nabla^2 \phi = - \frac{\rho_e}{\epsilon_r \epsilon_0} $$ !! !! Where \rho_e is the charge density !! KM: LBE solves potential equation of form !! $$ \partial_t \phi + \gamma \nabla^2 \phi + \gamma S = 0 $$ !! where !! S = \frac{\rho_e}{\epsilon_r \epsilon_0} !! Simuilar to derive routine but it updates the state whereas derive !! is used for tracking. !! !! This subroutine's interface must match the abstract interface definition !! [[proc_apply_source]] in derived/[[mus_source_type_module]].f90 in order to !! be callable via [[mus_source_op_type:applySrc]] function pointer. subroutine applySrc_chargeDensity_2ndOrd( fun, inState, outState, neigh, & & auxField, nPdfSize, iLevel, & & varSys, time, phyConvFac, & & derVarPos ) ! -------------------------------------------------------------------- ! !> Description of method to apply source terms class(mus_source_op_type), intent(in) :: fun !> input pdf vector real(kind=rk), intent(in) :: inState(:) !> output pdf vector real(kind=rk), intent(inout) :: outState(:) !> connectivity Array corresponding to state vector integer,intent(in) :: neigh(:) !> auxField array real(kind=rk), intent(in) :: auxField(:) !> number of elements in state Array integer, intent(in) :: nPdfSize !> current level integer, intent(in) :: iLevel !> variable system type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Physics conversion factor for current level type(mus_convertFac_type), intent(in) :: phyConvFac !> position of derived quantities in varsys type(mus_derVarPos_type), intent(in) :: derVarPos(:) ! -------------------------------------------------------------------- ! type(mus_varSys_data_type), pointer :: fPtr real(kind=rk) :: rhs(fun%elemLvl(iLevel)%nElems) real(kind=rk) :: rhs_Fac integer :: nElems, iElem, iDir, QQ, nScalars, posInTotal, statePos ! --------------------------------------------------------------------------- ! convert c pointer to solver type fortran pointer call c_f_pointer(varSys%method%val(fun%srcTerm_varPos)%method_data, fPtr) ! Number of elements to apply source terms nElems = fun%elemLvl(iLevel)%nElems associate( scheme => fPtr%solverData%scheme, & & poisson => fPtr%solverData%scheme%field(1)%fieldProp%poisson, & & physics => fPtr%solverData%physics ) ! factor to multiply rhs rhs_Fac = (1.0_rk - poisson%omega * 0.5_rk ) * poisson%pot_diff & & / poisson%permittivity ! Get charge density which is refered in config file either its ! spacetime variable or operation variable call varSys%method%val(fun%data_varPos)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = fun%elemLvl(iLevel)%idx(1:nElems), & & nVals = nElems, & & res = rhs ) ! convert physical to lattice and multiply with rhs factor rhs = (rhs / physics%fac(iLevel)%chargeDens) * rhs_Fac ! constant parameter QQ = scheme%layout%fStencil%QQ nScalars = varSys%nScalars !$omp do schedule(static) do iElem = 1, nElems !write(*,*) 'rhs ', rhs(iElem) posInTotal = fun%elemLvl(iLevel)%posInTotal(iElem) ! Source term: = (1-omega/2) \gamma * \rho_e / \epsilon do iDir = 1, QQ statePos = ( posintotal-1)* nscalars+idir+( 1-1)* qq outState(statePos) = outState(statePos) + scheme%layout%weight(iDir) & & * rhs(iElem) end do end do !iElem !$omp end do nowait end associate end subroutine applySrc_chargeDensity_2ndOrd ! ****************************************************************************** ! ! ****************************************************************************** ! !> Update state with source variable "ChargeDensity" with 1st order !! integration of source Term. !! Refer to Appendix in PhD Thesis of K. Masilamani !! "Coupled Simulation Framework to Simulate Electrodialysis Process for !! Seawater Desalination" !! !! $$ \nabla^2 \phi = - \frac{\rho_e}{\epsilon_r \epsilon_0} $$ !! !! Where \rho_e is the charge density !! KM: LBE solves potential equation of form !! $$ \partial_t \phi + \gamma \nabla^2 \phi + \gamma S = 0 $$ !! where !! S = \frac{\rho_e}{\epsilon_r \epsilon_0} !! Simuilar to derive routine but it updates the state whereas derive !! is used for tracking. !! !! This subroutine's interface must match the abstract interface definition !! [[proc_apply_source]] in derived/[[mus_source_type_module]].f90 in order to !! be callable via [[mus_source_op_type:applySrc]] function pointer. subroutine applySrc_chargeDensity_1stOrd( fun, inState, outState, neigh, & & auxField, nPdfSize, iLevel, & & varSys, time, phyConvFac, & & derVarPos ) ! -------------------------------------------------------------------- ! !> Description of method to apply source terms class(mus_source_op_type), intent(in) :: fun !> input pdf vector real(kind=rk), intent(in) :: inState(:) !> output pdf vector real(kind=rk), intent(inout) :: outState(:) !> connectivity Array corresponding to state vector integer,intent(in) :: neigh(:) !> auxField array real(kind=rk), intent(in) :: auxField(:) !> number of elements in state Array integer, intent(in) :: nPdfSize !> current level integer, intent(in) :: iLevel !> variable system type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Physics conversion factor for current level type(mus_convertFac_type), intent(in) :: phyConvFac !> position of derived quantities in varsys type(mus_derVarPos_type), intent(in) :: derVarPos(:) ! -------------------------------------------------------------------- ! type(mus_varSys_data_type), pointer :: fPtr type(mus_scheme_type), pointer :: scheme real(kind=rk) :: rhs(fun%elemLvl(iLevel)%nElems) real(kind=rk) :: rhs_Fac integer :: nElems, iElem, iDir, QQ, nScalars, posInTotal ! --------------------------------------------------------------------------- ! convert c pointer to solver type fortran pointer call c_f_pointer( varSys%method%val( fun%srcTerm_varPos )%method_data, & & fPtr ) scheme => fPtr%solverData%scheme ! Number of elements to apply source terms nElems = fun%elemLvl(iLevel)%nElems rhs_Fac = scheme%field(1)%fieldProp%poisson%pot_diff & & / scheme%field(1)%fieldProp%poisson%permittivity ! Get charge density which is refered in config file either its ! spacetime variable or operation variable call varSys%method%val(fun%data_varPos)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = fun%elemLvl(iLevel)%idx(1:nElems), & & nVals = nElems, & & res = rhs ) ! convert physical to lattice and multiply with rhs factor rhs = (rhs / fPtr%solverData%physics%fac(iLevel)%chargeDens) * rhs_Fac ! constant parameter QQ = scheme%layout%fStencil%QQ nScalars = varSys%nScalars !$omp do schedule(static) do iElem = 1, nElems !write(*,*) 'rhs ', rhs(iElem) posInTotal = fun%elemLvl(iLevel)%posInTotal(iElem) ! Source term: ! source = \gamma * \rho_e / \epsilon do iDir = 1, QQ outState(( posintotal-1)* nscalars+idir+( 1-1)* qq ) & & = outState(( posintotal-1)* nscalars+idir+( 1-1)* qq ) & & + scheme%layout%weight(iDir) * rhs(iElem) end do end do !iElem !$omp end do nowait end subroutine applySrc_chargeDensity_1stOrd ! ****************************************************************************** ! ! ************************************************************************** ! !> Calculate charge density source variable referred in config file !! !! The interface has to comply to the abstract interface !! [[tem_varSys_module:tem_varSys_proc_element]]. !! recursive subroutine deriveSrc_chargeDensity(fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! integer :: data_varPos ! -------------------------------------------------------------------- ! ! spacetime source variable data_varPos = fun%input_varPos(2) call varSys%method%val(data_varPos)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = res ) end subroutine deriveSrc_chargeDensity ! ****************************************************************************** ! end module mus_derQuanPoisson_module