! Copyright (c) 2019 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2019 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2019 Harald Klimach <harald.klimach@uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ****************************************************************************** !> author: Kannan Masilamani !! This module contains cylinder definition and routines related to cylinders ! Copyright (c) 2012-2013 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2012-2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2012, 2015-2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2013 Daniel Harlacher <d.harlacher@grs-sim.de> ! Copyright (c) 2014 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2014 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2015-2017 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2015-2016 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Daniel Fleischer <daniel.fleischer@student.uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2017 Daniel Petró <daniel.petro@student.uni-siegen.de> ! ! Parts of this file were written by Harald Klimach, Simon Zimny and Manuel ! Hasert for German Research School for Simulation Sciences GmbH. ! ! Parts of this file were written by Harald Klimach, Kannan Masilamani, ! Daniel Harlacher, Kartik Jain, Verena Krupp, Jiaxing Qi, Peter Vitt, ! Daniel Fleischer, Tobias Girresser and Daniel Petró for University Siegen. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! This file contains the source code for growing and dynamic arrays. ! This is used for arrays of primitives (int, long_int, real, ...) as well as ! for arrays of derived datatypes (tem_variable_type,...). ! ! To use these macros include the following to your source file. ! ! Smart growing array (GA) for ?tstring? ! Growing Arrays: ! ! declaration ! ! ! implementation ! ! ----------------------------------------------------------------- ! 2d Array, which can grow in second dimension only (GA2d) ! tname ... indicates type of dynamic array (long, int, real, ...) ! !------------------------------------------------------------------------------ ! ! dynamic Arrays: ! ! declaration ! ! ! implementation ! module tem_cylinder_module use env_module, only: rk, minLength, labelLen, zeroLength use tem_param_module, only: PI use tem_aux_module, only: tem_abort use tem_logging_module, only: logunit use tem_cube_module, only: tem_cube_type use tem_sphere_module, only: tem_sphereCubeOverlap, tem_sphere_type use tem_line_module, only: tem_line_type, tem_lineCubeOverlap use tem_transformation_module, only: tem_transformation_type use tem_float_module, only: operator(.fle.), operator(.fge.) ! include aotus modules use aotus_module, only: aot_get_val, aoterr_Fatal, aoterr_WrongType, & & flu_State, aoterr_NonExistent use aot_table_module, only: aot_table_open, aot_table_close, aot_table_length use aot_out_module, only: aot_out_type, aot_out_val, & & aot_out_open_table, aot_out_close_table implicit none private public :: grw_cylinderArray_type public :: init, append, truncate, destroy, empty, placeAt public :: tem_cylinder_type, tem_load_cylinder, tem_cylinderCubeOverlap public :: tem_cylinder_out !> This type provides information to !! create cylinder geometry type tem_cylinder_type !> vector defining length and axis of cylinder real(kind=rk) :: vec(3) real(kind=rk) :: radius !< radius of the cylinder real(kind=rk) :: origin(3) !< origin of the cylinder !> To choose what to do with intersection of this object !! if only_surface = true than the only the surface of the object !! is intersected !! if only_surface = false then the whole object is intersected !! default is set to false logical :: only_surface end type tem_cylinder_type !> growing array type for type(tem_cylinder_type) type grw_cylinderarray_type integer :: nvals = 0 integer :: containersize = 0 type(tem_cylinder_type), allocatable :: val(:) end type !> initialize the dynamic array interface init module procedure init_ga_cylinder end interface !> truncate the array, meaning !! cut off the trailing empty entries interface truncate module procedure truncate_ga_cylinder end interface !> empty the entries without changing arrays interface empty module procedure empty_ga_cylinder end interface !> destroy the dynamic array interface destroy module procedure destroy_ga_cylinder end interface !> insert an element at a given position interface placeat module procedure placeat_ga_cylinder module procedure placeat_ga_cylinder_vec end interface !> append a value to the dynamic array !! and return its position. interface append module procedure append_ga_cylinder module procedure append_ga_cylinder_vec end interface !> increase the size of the container !! for the array. interface expand module procedure expand_ga_cylinder end interface !> interface to write out cylinders in lua format to a file interface tem_cylinder_out module procedure tem_cylinder_out_scal module procedure tem_cylinder_out_vec end interface tem_cylinder_out !> interface to load cylinders interface tem_load_cylinder module procedure tem_load_cylinder module procedure tem_load_cylinder_single end interface tem_load_cylinder contains ! **************************************************************************** !> \brief Loading cylinder information from config file \n subroutine tem_load_cylinder(me, transform, conf, thandle) ! --------------------------------------------------------------------------! !inferface variables !> array of cylinders type(tem_cylinder_type), allocatable, intent(out) :: me(:) !> transformation for spatial object type(tem_transformation_type), intent(in) :: transform !> lua state type(flu_state) :: conf integer, intent(in) :: thandle !< handle for canonical objects ! --------------------------------------------------------------------------! ! local varaibles integer :: cyl_handle, cyl_subHandle integer :: iObj, nObjects ! --------------------------------------------------------------------------! write(logunit(1),*) 'Loading cylinder:' call aot_table_open(L = conf, parent = thandle, thandle = cyl_handle, & & key = 'object') call aot_table_open(L=conf, parent = cyl_handle, thandle = cyl_subHandle, & & pos = 1 ) if ( cyl_subHandle .eq. 0) then !object is a single table allocate(me(1)) call aot_table_close(L=conf, thandle=cyl_subHandle) call tem_load_cylinder_single( me(1), transform, conf, cyl_handle ) else !object is a multiple table call aot_table_close(L=conf, thandle=cyl_subHandle) nObjects = aot_table_length(L=conf, thandle=cyl_handle) allocate(me(nObjects)) do iObj=1,nObjects call aot_table_open(L=conf, parent=cyl_handle, thandle=cyl_suBHandle,& & pos=iObj) call tem_load_cylinder_single(me(iObj), transform, conf, cyl_Subhandle) call aot_table_close(L=conf, thandle=cyl_subHandle) end do end if call aot_table_close(L=conf, thandle=cyl_Handle) end subroutine tem_load_cylinder ! ***************************************************************************** ! ***************************************************************************** !> This routine single cylinder from object table subroutine tem_load_cylinder_single(me, transform, conf, thandle) ! --------------------------------------------------------------------------! !inferface variables type(tem_cylinder_type), intent(out) :: me !< cylinder data type type(flu_state) :: conf !< flu state integer, intent(in) :: thandle !< parent handle !> transformation for spatial object type(tem_transformation_type), intent(in) :: transform ! --------------------------------------------------------------------------! !local variable integer :: iError, vError(3), errFatal(3) ! --------------------------------------------------------------------------! errFatal = aoterr_fatal !read startPos distance of length from bounding box call aot_get_val(L=conf, thandle=thandle, & & val=me%origin, ErrCode=vError, & & key='origin', default=[0.0_rk,0.0_rk,0.0_rk] ) if (any(btest(vError, errFatal))) then write(logunit(0),*) & & 'FATAL Error occured, while retrieving cylinder origin :' call tem_abort() end if !read radius of cylinder filament in length call aot_get_val(L=conf, thandle=thandle, & & val=me%radius, ErrCode=iError, key='radius') if (btest(iError, aoterr_Fatal)) then write(logunit(0),*) & & 'FATAL Error occured, while retrieving cylinder radius' if (btest(iError, aoterr_NonExistent)) & & write(logunit(0),*) 'Variable not existent!' if (btest(iError, aoterr_WrongType)) & & write(logunit(0),*) 'Variable has wrong type!' call tem_abort() end if !read cylinder normal which defines the direction of the filament call aot_get_val(L=conf, thandle=thandle, & & val=me%vec, ErrCode=vError, key='vec') if (any(btest(vError, errFatal))) then write(logunit(0),*) 'FATAL Error occured, while retrieving cylinder vec' call tem_abort() end if !cylinder type call aot_get_val(L=conf, thandle=thandle, val=me%only_surface, & & ErrCode=iError, key='only_surface', & & pos=4, default=.false.) if (btest(iError, aoterr_WrongType)) then write(logunit(0),*) & & 'Error occured, while retrieving cylinder only_surface' write(logunit(0),*) 'Variable has wrong type!' write(logunit(0),*) 'Should be a LOGICAL!' call tem_abort() endif write(logunit(1),*) ' origin:', me%origin write(logunit(1),*) ' vec:', me%vec write(logunit(1),*) ' radius:', me%radius write(logunit(1),*) ' only_surface:', me%only_surface !apply transformation if(transform%active) then if(transform%deform%active) then me%vec = matmul(transform%deform%matrix, me%vec) me%origin = matmul(transform%deform%matrix, me%origin) endif if(transform%translate%active) then me%origin = transform%translate%vec + me%origin endif endif end subroutine tem_load_cylinder_single ! **************************************************************************** ! **************************************************************************** !> This function checks intesection of solid cube and cylinder. !! !! The test is done by projecting each cube vertices on the cylinder axis !! and check whether the projected point is within the cylinder length. !! If yes then use the projected point as the origin of sphere and !! do sphere-cube intersection. !!@todo HK: The algorithm used in here is not correct! !!@todo KM: BUG in defining cylinder with fixed length. !! This implementation works only for cylinder with infinite length function tem_cylinderCubeOverlap(cylinder, cube) result(overlap) ! --------------------------------------------------------------------------! !inferface variables type(tem_cylinder_type), intent(in) :: cylinder !< cylinder geometry data type(tem_cube_type), intent(in) :: cube logical :: overlap !< return value ! --------------------------------------------------------------------------! ! local variables real(kind=rk) :: proj real(kind=rk) :: cubeVer(15,3) type(tem_sphere_type) :: sphere type(tem_line_type) :: line integer :: iVer real(kind=rk) :: pntIntersect(3) ! --------------------------------------------------------------------------! overlap = .false. !! we check for all vertices to find if any of the cube vertices !! intersect with cylinder cubeVer(1,:) = cube%center cubeVer(2,:) = cube%center + [ cube%halfwidth, 0.0_rk, 0.0_rk] cubeVer(3,:) = cube%center + [-cube%halfwidth, 0.0_rk, 0.0_rk] cubeVer(4,:) = cube%center + [0.0_rk, cube%halfwidth, 0.0_rk] cubeVer(5,:) = cube%center + [0.0_rk, -cube%halfwidth, 0.0_rk] cubeVer(6,:) = cube%center + [0.0_rk, 0.0_rk, cube%halfwidth] cubeVer(7,:) = cube%center + [0.0_rk, 0.0_rk, -cube%halfwidth] cubeVer(8,:) = cube%origin cubeVer(9,:) = [cube%endPnt(1), cube%origin(2), cube%origin(3)] cubeVer(10,:) = [cube%origin(1), cube%endPnt(2), cube%origin(3)] cubeVer(11,:) = [cube%origin(1), cube%origin(2), cube%endPnt(3)] cubeVer(12,:) = [cube%endPnt(1), cube%endPnt(2), cube%origin(3)] cubeVer(13,:) = [cube%endPnt(1), cube%origin(2), cube%endPnt(3)] cubeVer(14,:) = [cube%origin(1), cube%endPnt(2), cube%endPnt(3)] cubeVer(15,:) = cube%endPnt sphere%radius = cylinder%radius sphere%only_surface = cylinder%only_surface !! check whether cylinder axis intersect by cube !! if true then no need to check for intersection of each cube vertices !! on cylinder line%origin = cylinder%origin line%vec = cylinder%vec if(tem_lineCubeOverlap(line, cube, pntIntersect)) then ! project intersected point on cylinder to check for ! sphere cube overlap proj = dot_product((pntIntersect - cylinder%origin), & & cylinder%vec) & & / dot_product(cylinder%vec, cylinder%vec) ! compute the actual coordinate position of projected ! point on the line sphere%origin = cylinder%origin + proj*cylinder%vec overlap = tem_sphereCubeOverlap( sphere, cube ) ! return if overlap is true if(overlap) return endif do iVer=1,15 ! Find the projection of cubever on line and check ! whether projection point is between 0 and 1. ! If projection < 0 then the point is before the line ! if projection > 0 then the point is after the line proj = dot_product((cubeVer(iVer,:) - cylinder%origin), & & cylinder%vec) & & / dot_product(cylinder%vec, cylinder%vec) if( (proj .fge. 0.0_rk) .and. (proj .fle. 1.0_rk)) then ! compute the actual coordinate position of projected ! point on the line sphere%origin = cylinder%origin + proj*cylinder%vec overlap = tem_sphereCubeOverlap( sphere, cube ) ! return if overlap is true if(overlap) return endif enddo end function tem_cylinderCubeOverlap ! **************************************************************************** ! ************************************************************************** ! !> Write out an array of cylinders in lua format !! subroutine tem_cylinder_out_vec( me, conf ) ! -------------------------------------------------------------------------- !> cylinder types to write out type( tem_cylinder_type ), intent(in) :: me(:) !> Aotus type handling the output to the file in lua format type(aot_out_type), intent(inout) :: conf ! -------------------------------------------------------------------------- ! counter integer :: i ! -------------------------------------------------------------------------- ! create a table with name cylinder call aot_out_open_table( put_conf = conf, tname = 'object' ) do i = 1, size(me) call tem_cylinder_out_scal( me(i), conf ) end do call aot_out_close_table( put_conf = conf ) end subroutine tem_cylinder_out_vec ! ************************************************************************** ! ! ************************************************************************** ! !> Write out a cylinder shape in lua format !! subroutine tem_cylinder_out_scal( me, conf ) ! -------------------------------------------------------------------------- !> cylinder types to write out type( tem_cylinder_type ), intent(in) :: me !> Aotus type handling the output to the file in lua format type(aot_out_type), intent(inout) :: conf ! -------------------------------------------------------------------------- ! --------------------------------------------------------------------------- ! create a table with name cylinder if not exist if( conf%level == 0 ) then call aot_out_open_table( put_conf = conf, tname = 'object' ) else call aot_out_open_table( put_conf = conf ) end if call aot_out_val( put_conf = conf, vname = 'origin', val = me%origin ) call aot_out_val( put_conf = conf, vname = 'vec', val = me%vec ) call aot_out_val( put_conf = conf, vname = 'radius', val = me%radius ) call aot_out_val( put_conf = conf, vname = 'only_surface', & & val = me%only_surface ) call aot_out_close_table( put_conf = conf ) end subroutine tem_cylinder_out_scal ! ************************************************************************** ! subroutine init_ga_cylinder(me, length) type(grw_cylinderarray_type), intent(out) :: me !< dynamic array to init integer, intent(in), optional :: length !< initial length of the container if (present(length)) then me%containersize = length else me%containersize = zerolength end if ! deallocate ... if( allocated( me%val )) & deallocate(me%val) ! ... and reallocate allocate(me%val(me%containersize)) me%nvals = 0 end subroutine init_ga_cylinder subroutine destroy_ga_cylinder(me) type(grw_cylinderarray_type), intent(inout) :: me !< dynamic array to destroy me%containersize = 0 me%nvals = 0 if( allocated( me%val ) ) deallocate(me%val) end subroutine destroy_ga_cylinder subroutine truncate_ga_cylinder(me) !------------------------------------------------------------------------ type(grw_cylinderarray_type) :: me !< array to truncate !------------------------------------------------------------------------ type(tem_cylinder_type), allocatable :: tarray(:) !------------------------------------------------------------------------ integer :: ii !------------------------------------------------------------------------ ! nothing to do if container size is not larger than the number of values ! in the array. if (me%containersize > me%nvals) then allocate(tarray(me%nvals)) do ii = 1, me%nvals tarray(ii) = me%val(ii) end do call move_alloc(tarray, me%val) me%containersize = me%nvals end if end subroutine truncate_ga_cylinder subroutine empty_ga_cylinder(me) !------------------------------------------------------------------------ type(grw_cylinderarray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ me%nvals = 0 end subroutine empty_ga_cylinder !> adds the value to a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! element at the requested position will be replaced. subroutine placeat_ga_cylinder(me, val, pos, length) type(grw_cylinderarray_type) :: me !< array to place the value into type(tem_cylinder_type), intent(in) :: val !< value to place at the given position integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (pos > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = pos, length = length) end if me%nvals = max( pos, me%nvals ) me%val(pos) = val end subroutine placeat_ga_cylinder !> adds the values starting from a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! elements starting from the requested position will be replaced up to !! the element at position `pos + size(val) - 1`. subroutine placeat_ga_cylinder_vec(me, val, pos, length) type(grw_cylinderarray_type) :: me !< array to append the value to type(tem_cylinder_type), intent(in) :: val(:) !< values to append integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length integer :: ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if ub = pos + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = pos, ub me%val(ii) = val(1+ii-pos) end do end subroutine placeat_ga_cylinder_vec subroutine append_ga_cylinder(me, val, length) type(grw_cylinderarray_type) :: me !< array to append the value to type(tem_cylinder_type), intent(in) :: val !< value to append !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (me%nvals+1 > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, length = length) end if me%nvals = me%nvals+1 me%val(me%nvals) = val end subroutine append_ga_cylinder subroutine append_ga_cylinder_vec(me, val, length) type(grw_cylinderarray_type) :: me !< array to append the value to type(tem_cylinder_type), intent(in) :: val(:) !< values to append !> optional length to expand the array integer, intent(in), optional :: length integer :: lb, ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if lb = me%nvals + 1 ub = lb + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = lb, ub me%val(ii) = val(1+ii-lb) end do end subroutine append_ga_cylinder_vec subroutine expand_ga_cylinder(me, pos, length) type(grw_cylinderarray_type) :: me !< array to resize integer, intent(in), optional :: pos !< optional predefined position !> optional length to expand the array integer, intent(in), optional :: length type(tem_cylinder_type), allocatable :: swpval(:) integer :: explen, ii explen = 0 ! increase the container by the requested length of double it if( present(length) ) then explen = max( length, minlength ) else ! set the global minimum length, if doubling would be smaller than that explen = max(me%containersize, minlength) end if ! if a position is given, increase the container to at least the size to ! fit the position. if( present(pos) ) explen = max(explen, pos-me%containersize) ! if the current size plus explen exceeds the max container size, ! reduce the size to the max container size. if( (huge(me%containersize) - explen) <= me%containersize) then ! set max container size me%containersize = huge(me%containersize) else ! set the new container size me%containersize = me%containersize + explen end if if ( me%nvals > 0 ) then allocate(swpval(me%containersize)) do ii = 1, me%nvals swpval(ii) = me%val(ii) end do call move_alloc( swpval, me%val ) else ! me%nvals == 0 if ( allocated(me%val) ) deallocate( me%val ) allocate( me%val(me%containersize) ) end if end subroutine expand_ga_cylinder end module tem_cylinder_module !> \page cylinder Cylinders !! Cylinders are defined by an origin, vector defining the length and the !! axis and the radius. !! Cylinder is considered to be solid as default i.e. all the cubes inside the !! cylinder are marked as intersected cubes. !! It is possible to created hollow cylinders by setting only_surface = true, !! it will mark only the cubes intersect with cylinder surface as intersected !! cubes !! !! Valid definition: !! \li Single cylinder !! \verbatim !! geometry={ !! kind='cylinder', !! object={ !! origin={0.0,0.0,0.0}, !! vec={1.0,0.0,0.0}, !! radius=0.25, !! only_surface = true, -- If not defined default is set to false !! } !! } !! \endverbatim !! !! \li Multiple cylinder !! \verbatim !! geometry={ !! kind='cylinder', !! object={ !! { !! origin={0.0,0.0,0.0}, !! vec={1.0,0.0,0.0}, !! radius=0.25 !! }, !! { !! origin={0.0,0.0,0.0}, !! vec={1.0,1.0,0.0}, !! radius=0.25 !! } !! } !! } !! \endverbatim !! \n\n !! Seeder file to generate mesh with single cylinder (only_surface=true) is below: !! include testsuite/plane/seeder.lua !! \n\n !! Mesh with hollow cylinder (Hollow => only_surface = true) !! \image html cylinder.png !! \n\n !! \image html cylinder_withedges.png !! \n\n !! Cutview of mesh with hollow cylinder !! \image html cylinder_hollow.png !! \n\n !! As said earlier, cylinder can be created as solid one using 'only_surface=false'. !! Cutview of Mesh generated with 'only_surface=false': !! \image html cylinder_solid.png !! \n\n !! Example lua file is available at \link testsuite/cylinder/seeder.lua !! \example testsuite/cylinder/seeder.lua