! Copyright (c) 2016-2017, 2019, 2021 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2016-2017 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2016-2020 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016-2017 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2016 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2016 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2016-2017, 2019, 2021 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2016 Jana Gericke <jana.gericke@student.uni-siegen.de> ! Copyright (c) 2017 Michael Gaida <michael.gaida@student.uni-siegen.de> ! Copyright (c) 2017 Neda Ebrahimi Pour <neda.epour@uni-siegen.de> ! Copyright (c) 2018 Robin Weihe <robin.weihe@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! Copyright (c) 2013 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2013-2014 Nikhil Anand <nikhil.anand@uni-siegen.de> ! Copyright (c) 2014, 2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2015, 2018, 2020 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. !-------------------------------------------- ! A O S - Array of structures layout new !------------------------------------------- ! Access to get_point value output ! Access to get_element value output ! *************************************************************************** ! !> This module provides a mechanism to define new variables in the simulation !! by applying some operator on existing variables. !! module tem_operation_var_module use, intrinsic :: iso_c_binding, only: c_ptr, c_loc, c_f_pointer, & & c_null_ptr ! include treelm modules use env_module, only: rk, long_k, labelLen use tem_varSys_module, only: tem_varSys_type, & & tem_varSys_check_inArgs, & & tem_get_element_chunk, & & tem_get_point_chunk, & & tem_varSys_op_type, & & tem_varSys_append_derVar, & & tem_varSys_proc_point, & & tem_varSys_proc_element, & & tem_varSys_proc_setParams, & & tem_varSys_proc_getParams, & & tem_varSys_proc_setupIndices, & & tem_varSys_proc_getValOfIndex, & & tem_varSys_solverData_evalElem_type use tem_variable_module, only: tem_variable_type use tem_varMap_module, only: tem_varMap_type, tem_create_varMap use tem_time_module, only: tem_time_type use treelmesh_module, only: treelmesh_type use tem_logging_module, only: logUnit, llerror use tem_aux_module, only: tem_abort use tem_dyn_array_module, only: PositionOfVal use tem_grow_array_module, only: append, init, & & truncate, grw_intArray_type, & & grw_labelArray_type use tem_operation_module, only: tem_varSys_op_data_type, & & tem_indexLvl_type use tem_reduction_transient_module, only: tem_reduction_transient_type, & & tem_reduction_transient_init, & & tem_reduction_transient_reset, & & tem_reduction_transient_update, & & tem_reduction_transient_getElement use tem_logical_operation_var_module, & & only: evalLogicalAnd_forPoint, & & evalLogicalOr_forPoint, & & evalLogicalGreater_forPoint, & & evalLogicalGreaterOrEqual_forPoint, & & evalLogicalLess_forPoint, & & evalLogicalLessOrEqual_forPoint, & & evalLogicalEqual_forPoint, & & evalLogicalNotEqual_forPoint, & & evalLogicalAnd_forElement, & & evalLogicalOr_forElement, & & evalLogicalGreater_forElement, & & evalLogicalGreaterOrEqual_forElement, & & evalLogicalLess_forElement, & & evalLogicalLessOrEqual_forElement, & & evalLogicalEqual_forElement, & & evalLogicalNotEqual_forElement, & & evalLogicalAnd_fromIndex, & & evalLogicalOr_fromIndex, & & evalLogicalGreater_fromIndex, & & evalLogicalGreaterOrEqual_fromIndex, & & evalLogicalLess_fromIndex, & & evalLogicalLessOrEqual_fromIndex, & & evalLogicalEqual_fromIndex, & & evalLogicalNotEqual_fromIndex implicit none private public :: tem_divideVecByScal_forPoint public :: tem_divideVecByScal_fromIndex public :: tem_varSys_append_operVar public :: tem_opVar_setupIndices public :: tem_opVar_fill_inputIndex public :: tem_varSys_op_data_type public :: tem_get_new_varSys_data_ptr public :: tem_free_varSys_data_ptr public :: tem_evalMag_forPoint, tem_evalMag_forElement, tem_evalMag_fromIndex public :: tem_evalAdd_forPoint, tem_evalAdd_forElement, tem_evalAdd_fromIndex public :: tem_evalDiff_forPoint, tem_evalDiff_forElement, & & tem_evalDiff_fromIndex public :: tem_evalMultiply_forPoint, tem_evalMultiply_forElement, & & tem_evalMultiply_fromIndex public :: tem_division_forPoint, tem_division_forElement, & & tem_division_fromIndex public :: tem_opVar_getParams, tem_opVar_setParams public :: tem_opVar_reduction_transient_init public :: tem_opVar_reduction_transient_update contains ! ************************************************************************** ! !> Routine to get a pointer to a new instance of method_data for an operation !! variable function tem_get_new_varSys_data_ptr(solver_bundle) result(resPtr) ! ---------------------------------------------------------------------- ! !> Pointer to the newly created instance. type(c_ptr) :: resPtr !> Optional solver data to store in tem_varSys_op_data_type type(c_ptr), optional, intent(in) :: solver_bundle ! ---------------------------------------------------------------------- ! !> Local variable to allocate a new instance. type(tem_varSys_op_data_type), pointer :: res ! ---------------------------------------------------------------------- ! allocate(res) if (present(solver_bundle)) res%solver_bundle = solver_bundle resPtr = c_loc(res) end function tem_get_new_varSys_data_ptr ! ************************************************************************** ! ! ************************************************************************** ! !> Free a method data structure again. subroutine tem_free_varSys_data_ptr(vardat_ptr) ! ---------------------------------------------------------------------- ! !> Data pointer to free type(c_ptr), intent(inout) :: vardat_ptr ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: vardat ! ---------------------------------------------------------------------- ! call c_f_pointer(vardat_ptr, vardat) deallocate(vardat) vardat_ptr = c_null_ptr end subroutine tem_free_varSys_data_ptr ! ************************************************************************** ! ! ************************************************************************** ! !> subroutine to add the variables from the input lua script to the varsys subroutine tem_varSys_append_operVar( operVar, varSys, pos, & & solverData_evalElem ) !-------------------------------------------------------------------------- !> variables defined in the lua file type(tem_variable_type), intent(in) :: operVar !> global variable system to which operVar to be appended type(tem_varSys_type), intent(inout) :: varSys !> Position of the variable in the system. integer, optional, intent(out) :: pos !> A setter routine that allows the caller to define routine for the !! construction of an element representation. type(tem_varSys_solverData_evalElem_type), & & optional, intent(in) :: solverData_evalElem !-------------------------------------------------------------------------- integer :: addedPos integer :: nComps, nInputs integer, allocatable :: inPos(:) logical :: wasAdded character(len=labelLen), allocatable :: input_varname(:) integer, allocatable :: input_varIndex(:) logical :: isSatisfied procedure(tem_varSys_proc_point), pointer :: get_point => NULL() procedure(tem_varSys_proc_element), pointer :: get_element => NULL() procedure(tem_varSys_proc_setParams), pointer :: set_params => NULL() procedure(tem_varSys_proc_getParams), pointer :: get_params => NULL() procedure(tem_varSys_proc_setupIndices), pointer :: & & setup_indices => NULL() procedure(tem_varSys_proc_getValOfIndex), pointer :: & & get_valOfIndex => NULL() type(c_ptr) :: method_data type(tem_varSys_op_data_type), pointer :: opData !-------------------------------------------------------------------------- nullify(get_point, get_element, set_params, get_params, setup_indices, & & get_valOfIndex) nComps = operVar%nComponents nInputs = size(operVar%input_varname) allocate(input_varname(nInputs)) input_varname = operVar%input_varname ! check if input_varnames satisfy requirements for operType ! and correct user defined nComps if it does not match operType call check_opVar_prerequisites( operType = operVar%operType, & & nInputs = nInputs, & & input_varname = input_varname, & & varSys = varSys, & & nComps = nComps, & & isSatisfied = isSatisfied ) !> If not satisfied then it is not possible to append current variable !! to varSys if (.not. isSatisfied) then write(logUnit(1),*) 'WARNING: input varnames does not satisfy' write(logUnit(1),*) ' requirements for operType '& & //trim(operVar%operType) write(logUnit(1),*) 'Variable: "'//trim(operVar%label) & & //'" is not appended.' return end if ! for operation variables, set_params, get_params and setup_indices are same ! since they send information to depend variables set_params => tem_opVar_setParams get_params => tem_opVar_getParams setup_indices => tem_opVar_setupIndices ! Get method data container to store indices for getValOfIndex ! Overwrite this method data with solver method data if operation ! is solver-specific method_data = tem_get_new_varSys_data_ptr() call C_F_POINTER(method_data, opData) select case(trim(operVar%operType)) ! magnitude, division, multiplication are solver specific ! so set using getEvalFuncionsCallback case( 'difference' ) get_element => tem_evalDiff_forElement get_point => tem_evalDiff_forPoint get_valOfIndex => tem_evalDiff_fromIndex case( 'rel_difference' ) get_element => evalRelDiff_forElement get_point => evalRelDiff_forPoint get_valOfIndex => evalRelDiff_fromIndex case( 'addition' ) get_element => tem_evalAdd_forElement get_point => tem_evalAdd_forPoint get_valOfIndex => tem_evalAdd_fromIndex case ('multiplication') get_point => tem_evalMultiply_forPoint get_element => tem_evalMultiply_forElement get_valOfindex => tem_evalMultiply_fromIndex case( 'multiply_scalar_times_vector' ) get_point => tem_multiplyScalTimesVec_forPoint get_element => multiplyScalTimesVec_forElement get_valOfindex => tem_multiplyScalTimesVec_fromIndex case( 'division', 'div' ) get_point => tem_division_forPoint get_element => tem_division_forElement get_valOfindex => tem_division_fromIndex case( 'divide_vector_by_scalar' ) get_point => tem_divideVecByScal_forPoint get_element => divideVecByScal_forElement get_valOfindex => tem_divideVecByScal_fromIndex case( 'gradient', 'grad', 'gradientX', 'gradX','gradientY','gradY', & & 'gradientZ', 'gradZ' ) ! Pointers set by the solvers using opVar_setter callback, see below case( 'magnitude' ) get_point => tem_evalMag_forPoint get_element => tem_evalMag_forElement get_valOfindex => tem_evalMag_fromIndex case( 'extract' ) allocate( input_varIndex(size(operVar%input_varIndex)) ) input_varIndex = operVar%input_varIndex get_element => extract_forElement get_point => extract_forPoint get_valOfIndex => extract_fromIndex case( 'combine' ) get_element => combine_forElement get_point => combine_forPoint get_valOfIndex => combine_fromIndex case( 'greater_than', 'gt', '>' ) get_point => evalLogicalGreater_forPoint get_element => evalLogicalGreater_forElement get_valOfIndex => evalLogicalGreater_fromIndex case( 'greater_than_or_equal', 'ge', '>=' ) get_point => evalLogicalGreaterOrEqual_forPoint get_element => evalLogicalGreaterOrEqual_forElement get_valOfIndex => evalLogicalGreaterOrEqual_fromIndex case( 'less_than', 'lt', '<' ) get_point => evalLogicalLess_forPoint get_element => evalLogicalLess_forElement get_valOfIndex => evalLogicalLess_fromIndex case( 'less_than_or_equal', 'le', '<=' ) get_point => evalLogicalLessOrEqual_forPoint get_Element => evalLogicalLessOrEqual_forElement get_valOfIndex => evalLogicalLessOrEqual_fromIndex case( 'equal', 'eq', '=' ) get_point => evalLogicalEqual_forPoint get_Element => evalLogicalEqual_forElement get_valOfIndex => evalLogicalEqual_fromIndex case( 'not_equal', 'ne', '/=' ) get_point => evalLogicalNotEqual_forPoint get_Element => evalLogicalNotEqual_forElement get_valOfIndex => evalLogicalNotEqual_fromIndex case( 'and' ) get_point => evalLogicalAnd_forPoint get_Element => evalLogicalAnd_forElement get_valOfIndex => evalLogicalAnd_fromIndex case( 'or' ) get_point => evalLogicalOr_forPoint get_Element => evalLogicalOr_forElement get_valOfIndex => evalLogicalOr_fromIndex case('reduction_transient') opData%redTrans%config = operVar%redTransConfig get_point => reductionTransient_forPoint get_Element => reductionTransient_forElement get_valOfIndex => reductionTransient_fromIndex case default if (.not. (associated(get_point) & & .or. associated(get_element) & & .or. associated(set_params) & & .or. associated(get_params) & & .or. associated(setup_indices) & & .or. associated(get_valOfIndex))) then write(logUnit(3),*) 'operType: ' & & // trim(operVar%operType) & & // ' not supported. Variable is not appended.' return ! go to next variable end if end select ! Workaround for Intel 15 compiler if ( .not. allocated(input_varname) ) then allocate( input_varname(0) ) end if if ( .not. allocated(input_varIndex) ) then allocate( input_varIndex(0) ) end if ! append variable to varSys call tem_varSys_append_derVar( & & me = varSys, & & varName = operVar%label, & & operType = operVar%operType, & & nComponents = nComps, & & input_varname = input_varname, & & input_varIndex = input_varIndex, & & method_data = method_data, & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = addedPos, & & wasAdded = wasAdded ) if (wasAdded) then if (present(solverData_evalElem)) then ! If an solverData_evalElem operation is provided, override the ! get_element pointer and use the provided setter solverData_evalElem ! instead to define the get_element routine. call solverData_evalElem%opVar_setter(varSys%method%val(addedPos)) end if write(logUnit(9),*) 'Successfully appended variable "' & & // trim(operVar%label)// '" to the variable system' else if (addedpos < 1) then write(logUnit(7),*) 'WARNING: variable '//trim(operVar%label)// & & ' is not added to variable system' end if if (present(pos)) pos = addedPos ! deallocate here to be allocated for next variable deallocate(input_varname) if (allocated(input_varIndex)) deallocate(input_varIndex) if (allocated(inPos)) deallocate(inPos) end subroutine tem_varSys_append_operVar ! ************************************************************************** ! ! ************************************************************************** ! !> This subroutine checks whether input variables satisfy requirements for !! opertype. !! !! For example: nComponents, number of inputs etc. !! If input_varname not found in varSys then this function returns false. !! If user defined nComps = -1 then nComps is set according to operType. !! !! This subroutine checks operations used in both treelm and solvers subroutine check_opVar_prerequisites( operType, nInputs, input_varname, & & varSys, nComps, isSatisfied ) !--------------------------------------------------------------------------! !> Operation type character(len=*), intent(in) :: operType !> Number of inputs integer, intent(in) :: nInputs !> Input varnames for current operation character(len=*), intent(in) :: input_varname(nInputs) !> Variable system to look for input_varname type(tem_varSys_type), intent(in) :: varSys !> Number of components defined for operation variable. !! If nComps == -1 then current nComps is set here integer, intent(inout) :: nComps !> true if all requirements for opertype are satisfied logical, intent(out) :: isSatisfied !--------------------------------------------------------------------------! integer :: iIn, total_input_nComps integer :: inpos(nInputs), input_nComps(nInputs) !--------------------------------------------------------------------------! write(logUnit(7),*) 'Checking prerequisites for opertype: '//trim(operType) isSatisfied = .true. ! Position of input variables in varSys do iIn = 1, nInputs inPos(iIn) = PositionofVal(varSys%varname, input_varname(iIn)) end do if ( all(inPos > 0) ) then input_nComps(:) = varSys%method%val(inPos(:))%nComponents else isSatisfied = .false. write(logUnit(1),*) 'Error: input varnames not found in varsys' return end if select case (trim(operType)) case ('addition', 'difference', 'rel_difference', 'multiplication', & & 'division') ! operations which require two inputs and both to have same number of ! components if (size(input_varname) /= 2) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 2' call tem_abort() end if if (nComps == -1) then nComps = input_nComps(1) write(logUnit(7),*) 'INFO: nComponents is not defined by user.' write(logUnit(7),*) ' nComps set to nComps of 1st input variable' end if if (.not. all(input_nComps == nComps)) then write(logUnit(1),*) 'Error: nComps of operation variable does not ' & & //'match with input variables nComps' write(logUnit(1),*) 'Input nComps: ', input_nComps call tem_abort() end if case ('multiply_scalar_times_vector') ! operations which require two inputs and 1st input must be a scalar if (size(input_varname) /= 2) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 2' call tem_abort() end if ! 1st input variable must be scalar if (input_nComps(1) /= 1) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) '1st input variable is not a scalar' call tem_abort() end if if (nComps == -1 .or. nComps /= input_nComps(2)) then write(logUnit(1),*) 'Warning: nComps for operVar is wrong.' write(logUnit(1),*) ' Setting nComps =', input_nComps(2) nComps = input_nComps(2) end if case ('divide_vector_by_scalar') ! operations which require two inputs and 1st input must be a scalar if (size(input_varname) /= 2) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 2' call tem_abort() end if ! 2nd input variable must be scalar if (input_nComps(2) /= 1) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) '1st input variable is not a scalar' call tem_abort() end if if (nComps == -1 .or. nComps /= input_nComps(1)) then write(logUnit(1),*) 'Warning: nComps for operVar is wrong.' write(logUnit(1),*) ' Setting nComps =', input_nComps(1) nComps = input_nComps(1) end if case ('magnitude') ! operations which require only one input and ncomponents must be 1 if (nInputs /= 1 ) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 1' call tem_abort() end if if ( nComps /= 1 ) then write(logUnit(1),*) 'Warning: nComps /= 1. Setting nComps = 1' nComps = 1 end if case ('meansquare') ! operations which require only one input and ncomps == input_ncomps if (nInputs /= 1 ) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 1' call tem_abort() end if if ( nComps /= input_nComps(1) ) then write(logUnit(1),*) 'Warning: nComps /= input, should be:', & & input_nComps(1) write(logUnit(1),*) 'but is:', nComps write(logUnit(1),*) 'Setting it to ', input_nComps(1) nComps = input_nComps(1) end if case ('locall2mean','deviation') ! operations which require only one input and ncomps == input_ncomps if (nInputs /= 1 ) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 1' call tem_abort() end if if ( nComps /= input_nComps(1) ) then write(logUnit(1),*) 'Warning: nComps /= input, should be:', & & input_nComps(1) write(logUnit(1),*) 'but is:', nComps write(logUnit(1),*) 'Setting it to ', input_nComps(1) nComps = input_nComps(1) end if case ('extract', 'gradient', 'gradientX', 'gradientY', 'gradientZ', & & 'reduction_transient' ) ! operations which require only one input and ncomponents can be >= 1 if (nInputs /= 1 ) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 1' call tem_abort() end if if (nComps == -1) then write(logUnit(1),*) 'Error: nComps for operVar is not defined.' call tem_abort() end if case ('combine') ! operations which require more than two inputs and ! nComps is sum of nComps of input vars total_input_nComps = sum(input_nComps) if (nComps /= total_input_nComps) then write(logUnit(llerror),*) 'Warning: In variable operation combine' write(logUnit(llerror),*) ' User defined nComps ' & & // '/= sum(input_nComponents).' write(logUnit(llerror),*) & & ' So, setting nComps = sum(input_nComponents)' write(logUnit(llerror),*) ' nComps: ', total_input_nComps nComps = total_input_nComps end if case( 'greater_than', 'gt', '>', & & 'greater_than_or_equal', 'ge', '>=', & & 'less_than', 'lt', '<', & & 'less_than_or_equal', 'le', '<=', & & 'equal', 'eq', '=', & & 'not_equal', 'ne', '/=', & & 'and', & & 'or' ) if (size(input_varname) /= 2) then write(logUnit(1),*) 'Error: In operation type: '//trim(operType) write(logUnit(1),*) 'Number of input_varname /= 2' call tem_abort() end if case default write(logUnit(1),*) 'ERROR: operType: ' // trim(operType) & & // ' not supported. Variable is not appended.' call tem_abort() end select end subroutine check_opVar_prerequisites ! ************************************************************************** ! ! ************************************************************************** ! !> Initialize time reduction operation variable !! Loop over all variable in varSys and allocate redTrans%val for !! reduction_transient operation variable with nElems subroutine tem_opVar_reduction_transient_init(varSys, tree, redTransVarMap,& & nDofs, time) ! ------------------------------------------------------------------------- !> Global variable system type(tem_varSys_type), intent(in) :: varSys !> treelmesh_type type(treelmesh_type), intent(in) :: tree !> position of time reduction variable in varSys type(tem_varMap_type), intent(out) :: redTransVarMap !> Solver nDegrees of freedom integer, intent(in), optional :: nDofs !> Current time type(tem_time_type), intent(in) :: time ! ------------------------------------------------------------------------- type(tem_varSys_op_data_type), pointer :: opData integer :: iVar, iElem, varPos, nDofs_loc, posDepVar, nCompMax, idxMax integer :: nRedVars type(grw_labelArray_type) :: redTransVarName integer :: elemPos(tree%nElems) real(kind=rk), allocatable :: input_varRes(:) ! ------------------------------------------------------------------------- if (present(nDofs)) then nDofs_loc = nDofs else nDofs_loc = 1 end if ! Gather list of variable names which has reduction_transient operation call init(redTransVarName) do iVar = 1, varSys%varName%nVals if (trim(varSys%method%val(iVar)%operType) == 'reduction_transient') then call append(me=redTransVarName, val=varSys%varName%val(iVar)) end if end do ! create varMap to store position of reduction_transient variable in varSys call tem_create_varMap( & & varName = redTransVarName%val(1:redTransVarName%nVals), & & varSys = varSys, & & varMap = redTransVarMap ) elemPos(1:tree%nElems) = (/ (iElem, iElem=1, tree%nElems) /) nRedVars = redTransVarMap%varPos%nVals nCompMax = maxval(varSys%method%val(redTransVarMap%varPos%val(1:nRedVars)) & & %nComponents) allocate(input_varRes(tree%nElems*nCompMax*nDofs_loc)) ! Initialize time reduction do iVar = 1, redTransVarMap%varPos%nVals varPos = redTransVarmap%varPos%val(iVar) call C_F_POINTER(varSys%method%val(varPos)%method_data, opData) call tem_reduction_transient_init( & & me = opData%redTrans, & & nElems = tree%nElems, & & nComponents = varSys%method%val(varPos)%nComponents, & & nDofs = nDofs_loc ) ! Fill last posDepVar = varSys%method%val(varPos)%input_varPos(1) call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = tree%nElems, & & nDofs = nDofs_loc, & & res = input_varRes(:) ) idxMax = opData%redTrans%nEntries opData%redTrans%val(:, opData%redTrans%last) = input_varRes(1:idxMax) end do end subroutine tem_opVar_reduction_transient_init ! ************************************************************************** ! ! ************************************************************************** ! !> Update all time reduction operation variables for entire domain subroutine tem_opVar_reduction_transient_update(redTransVarPos, varSys, tree,& & time) ! ---------------------------------------------------------------------- ! !> Position of time reduction variables in varSys integer, intent(in) :: redTransVarPos(:) !> Global Variable system type(tem_varSys_type), intent(in) :: varSys !> treelmesh_type type(treelmesh_type), intent(in) :: tree !> Current time type(tem_time_type), intent(in) :: time ! ---------------------------------------------------------------------- ! integer :: elemPos(tree%nElems) real(kind=rk), allocatable :: input_varRes(:) integer :: iVar, iElem, posDepVar, nCompMax, idxMax, nDofs type(tem_varSys_op_data_type), pointer :: opData ! ---------------------------------------------------------------------- ! ! Only need to do anything here if at least one variable with reduction ! is to be computed. if (size(redTransVarPos) < 1) RETURN ! nDofs of solver are stored in opData%redTrans which is same for all ! variables so get from any reduction_transient variable call C_F_Pointer(varSys%method%val(redTransVarPos(1))%method_data, & & opData ) nDofs = opData%redTrans%nDofs elemPos(1:tree%nElems) = (/ (iElem, iElem=1, tree%nElems) /) nCompMax = maxval(varSys%method%val(redTransVarPos(:))%nComponents) allocate(input_varRes(tree%nElems*nCompMax*nDofs)) do iVar = 1, size(redTransVarPos) call C_F_Pointer(varSys%method%val(redTransVarPos(iVar))%method_data, & & opData ) posDepVar = varSys%method%val(redTransVarPos(iVar))%input_varPos(1) call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = tree%nElems, & & nDofs = nDofs, & & res = input_varRes(:) ) idxMax = opData%redTrans%nEntries call tem_reduction_transient_update(me = opData%redTrans, & & res = input_varRes(1:idxMax) ) end do deallocate(input_varRes) end subroutine tem_opVar_reduction_transient_update ! ************************************************************************** ! ! ************************************************************************** ! !> Evaluate the function pointers of the dependent variables, !! and then calculate the difference between these two. ( scalar or vector ) !! In lua file, first define new variable with varType operation kind as !! "difference" and provide two dependent variable via input_varname. !! If input_varname variable is not part of predefined solver variables then !! add also that variable via variable table for example spacetime function !! variable. !! For example: Define a variable called difference, which depend on density !! and spacetime. one can get an error between simulation !! results and analytical solution. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'dens_reference', !! ncomponents = 1, !! vartype = "st_fun", !! st_fun = luaFun !! }, !! { !! name = 'dens_difference', !! ncomponents = 1, !! vartype = "operation", !! operation = {kind='difference', input_varname={density, dens_reference}} !! } !! ... !! } !! tracking = { !! variable = {'dens_difference'}, !! folder = 'tracking/', !! shape = {kind = 'canoND', object = {origin = {3.0,3.1,3.0} } }, !! format = 'ascii', !! time = {min = 0, max = tmax, interval = 1}, !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine tem_evalDiff_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk), allocatable :: input_varRes(:,:) ! ---------------------------------------------------------------------- ! integer :: nTotal ! ---------------------------------------------------------------------- ! nTotal = nElems*nDofs*fun%nComponents ! nInputs must be two allocate(input_varRes(nTotal, fun%nInputs)) do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes(:, iDep) ) end do res(:nTotal) = input_varRes(:, 1) - input_varRes(:, 2) deallocate(input_varRes) end subroutine tem_evalDiff_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalDiff_forElement except it evaluate diff from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point recursive subroutine tem_evalDiff_forPoint( fun, varsys, point, time, tree, & & nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar integer :: nTotal ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk), allocatable :: input_varRes(:,:) ! ---------------------------------------------------------------------- ! nTotal = nPnts*fun%nComponents ! nInputs must be two allocate(input_varRes(nPnts*fun%nComponents, fun%nInputs)) do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = input_varRes(:, iDep) ) end do res(:nTotal) = input_varRes(:, 1) - input_varRes(:, 2) deallocate(input_varRes) end subroutine tem_evalDiff_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalDiff_forPoint except it evaluate diff from points via index !! which are setup before hand !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point recursive subroutine tem_evalDiff_fromIndex( fun, varSys, time, iLevel, idx, & & idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk), allocatable :: input_varRes(:,:) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData integer :: nTotal ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) ! check if number of index are the same as number of values asked for call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'tem_evalDiff_fromIndex' ) nTotal = nVals*fun%nComponents ! nInputs must be two allocate(input_varRes(nTotal, fun%nInputs)) do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable for indices !rent derive dependent variable call varSys%method%val(posDepVar)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(iDep) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes(:,iDep) ) end do res(:nTotal) = input_varRes(:, 1) - input_varRes(:, 2) deallocate(input_varRes) end subroutine tem_evalDiff_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalDiff but output of 2nd dependent variable is used to compute !! relative difference. !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine evalRelDiff_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar integer :: nTotal ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk), allocatable :: input_varRes(:,:) ! ---------------------------------------------------------------------- ! nTotal = nElems*nDofs*fun%nComponents ! nInputs must be two allocate(input_varRes(nTotal, fun%nInputs)) if (nDofs > 1) then write(*,*) 'TODO: evalreldiff does not work for polynomial data yet' write(*,*) ' It makes use of a division, which can not directly' write(*,*) ' be done in modal space!' write(*,*) '' write(*,*) 'Need to replace this routine in Ateles!' write(*,*) 'Stopping now.' call tem_abort() end if do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes(:, iDep) ) end do res(:nTotal) = ( input_varRes(:, 1) - input_varRes(:, 2) ) & & / input_varRes(:, 2) deallocate(input_varRes) end subroutine evalRelDiff_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalRelDiff_forElement except it evaluate relatice diff !! from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point. recursive subroutine evalRelDiff_forPoint( fun, varsys, point, time, tree, & & nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar integer :: nTotal ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk), allocatable :: input_varRes(:,:) ! ---------------------------------------------------------------------- ! nTotal = nPnts*fun%nComponents ! nInputs must be two allocate(input_varRes(nTotal, fun%nInputs)) do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = input_varRes(:, iDep) ) end do res(:nTotal) = ( input_varRes(:, 1) - input_varRes(:, 2) ) & & / input_varRes(:, 2) deallocate(input_varRes) end subroutine evalRelDiff_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalRelDiff_forElement except it evaluate relative diff !! from points via index which are setup before !! !! recursive subroutine evalRelDiff_fromIndex( fun, varSys, time, iLevel, idx, & & idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk), allocatable :: input_varRes(:,:) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData integer :: nTotal ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) nTotal = nVals*fun%nComponents call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'evalRelDiff_fromIndex' ) ! nInputs must be two allocate(input_varRes(nTotal, fun%nInputs)) do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable for indices call varSys%method%val(posDepVar)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(iDep) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes(:,iDep) ) end do res(:nTotal) = ( input_varRes(:, 1) - input_varRes(:, 2) ) & & / input_varRes(:, 2) deallocate(input_varRes) end subroutine evalRelDiff_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Evaluate the function pointers of the dependent variables, !! and then calculate the addition or arbinary number of input variables !! with all input variables have same nComponents. ( scalar or vector ) !! In lua file, first define new variable with varType operation kind as !! "addition" and provide two dependent variable via input_varname. !! If input_varname variable is not part of predefined solver variables then !! add also that variable via variable table for example spacetime function !! variable. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'dens_reference', !! ncomponents = 1, !! vartype = "st_fun", !! st_fun = luaFun !! }, !! { !! name = 'dens_difference', !! ncomponents = 1, !! vartype = "operation", !! operation = {kind='addition', input_varname={density, dens_reference}} !! } !! ... !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine tem_evalAdd_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar real(kind=rk), allocatable :: input_varRes(:) integer :: nTotal ! ---------------------------------------------------------------------- ! nTotal = nElems*nDofs*fun%nComponents allocate(input_varRes(nTotal)) res = 0.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes ) res(:nTotal) = res(:nTotal) + input_varRes end do deallocate(input_varRes) end subroutine tem_evalAdd_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as tem_evalAdd_forElement except it evaluate addition from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point recursive subroutine tem_evalAdd_forPoint( fun, varsys, point, time, tree, & & nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar real(kind=rk) :: input_varRes(nPnts*fun%nComponents) ! ---------------------------------------------------------------------- ! res = 0.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_point( varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = input_varRes ) res(:nPnts*fun%nComponents) = res(:nPnts*fun%nComponents) & & + input_varRes end do end subroutine tem_evalAdd_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as tem_evalAdd_forPoint except it evaluate addition from points via !! index which are setup before hand !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point recursive subroutine tem_evalAdd_fromIndex( fun, varSys, time, iLevel, idx, & & idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar ! first dimension:nElems, ! second dimension:size of difference variable in input_varname real(kind=rk) :: input_varRes(nVals * fun%nComponents) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'evalAdd_fromIndex' ) res = 0.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable for indices !rent derive dependent variable call varSys%method%val(posDepVar)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(iDep) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes ) res(:nVals*fun%nComponents) = res(:nVals*fun%nComponents) + input_varRes end do end subroutine tem_evalAdd_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Evaluate magnitude of any vectorial variable. !! In lua file, first define new variable with varType operation kind as !! "magnitude" and provide name of the variable from which magnitude !! to be derived in input_varname. !! If input_varname variable is not part of predefined solver variables then !! add also that variable via variable table. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'velMag', !! ncomponents = 1, !! vartype = "operation", !! operation = {kind='magnitude',input_varname={'velocity'}} !! }, !! } !! tracking = { !! variable = {'velMag'}, !! folder = 'tracking/', !! shape = {kind = 'canoND', object = {origin = {3.0,3.1,3.0} } }, !! format = 'ascii', !! time = {min = 0, max = tmax, interval = 1}, !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine tem_evalMag_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iElem, depVar_pos, depVar_nComps, offset, iDof real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! ! get the position of dependent variable, assuming only one depVar_pos = fun%input_varPos(1) ! get the nComp of dependent variable depVar_nComps = varSys%method%val( depVar_pos )%nComponents ! allocate array to save results allocate(input_varRes( nElems * nDofs * depVar_nComps )) ! derive dependent variable call varSys%method%val(depVar_pos)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes(:) ) ! compute magnitude ! assuming fun%nComponents = 1 input_varRes = input_varRes * input_varRes do iElem = 1, nElems do iDof = 1, nDofs offset = (( ielem-1)* depvar_ncomps* ndofs+( idof-1)* depvar_ncomps+0) res((( ielem-1)* 1* ndofs+( idof-1)* 1+1) ) & & = sqrt(sum(input_varRes(offset+1 : offset+depVar_nComps))) end do end do deallocate(input_varRes) end subroutine tem_evalMag_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalMag_forElement except it evaluate magnitude from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. recursive subroutine tem_evalMag_forPoint( fun, varsys, point, time, tree, & & nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iPnt, depVar_pos, depVar_nComps, offset real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! ! get the position of dependent variable, assuming only one depVar_pos = fun%input_varPos(1) ! get the nComp of dependent variable depVar_nComps = varSys%method%val( depVar_pos )%nComponents ! allocate array to save results allocate(input_varRes( nPnts * depVar_nComps )) ! derive dependent variable call varSys%method%val(depVar_pos)%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = input_varRes(:) ) ! compute magnitude ! assuming fun%nComponents = 1 input_varRes = input_varRes * input_varRes do iPnt = 1, nPnts offset = (( ipnt-1)* depvar_ncomps+0) res(iPnt) = sqrt(sum(input_varRes(offset+1 : offset+depVar_nComps))) end do deallocate(input_varRes) end subroutine tem_evalMag_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as evalMag_forPoint except it evaluate magnitude from points via !! indices which need to be setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. recursive subroutine tem_evalMag_fromIndex( fun, varSys, time, iLevel, idx, & & idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iVal, depVar_pos, depVar_nComps, offset real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'evalMag_fromIndex' ) ! get the position of dependent variable, assuming only one depVar_pos = fun%input_varPos(1) ! get the nComp of dependent variable depVar_nComps = varSys%method%val( depVar_pos )%nComponents ! allocate array to save results allocate(input_varRes( nVals * depVar_nComps )) ! derive dependent variable call varSys%method%val(depVar_pos)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(1) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes(:) ) ! compute magnitude ! assuming fun%nComponents = 1 input_varRes = input_varRes * input_varRes do iVal = 1, nVals offset = (( ival-1)* depvar_ncomps+0) res(iVal) = sqrt(sum(input_varRes(offset+1 : offset+depVar_nComps))) end do deallocate(input_varRes) end subroutine tem_evalMag_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Routine to multiply variables if all variables have same number of !! components. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'coeff', !! ncomponents = 1, !! vartype = "st_fun", !! st_fun = 0.25 !! }, !! { !! name = 'newVel', !! ncomponents = 1, !! vartype = "operation", !! operation = {kind='multiplication', !! input_varname={coeff, vel_mag}} !! } !! ... !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine tem_evalMultiply_forElement( fun, varsys, elempos, & & time, tree, nElems, & & nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar integer :: nTotal real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! if (nDofs > 1) then write(*,*) 'TODO: evalmultiply does not work for polynomial data yet' write(*,*) ' It makes use of a multiplication, which can not' write(*,*) ' directly be done that simple in modal space!' write(*,*) '' write(*,*) 'Need to replace this routine in Ateles!' write(*,*) 'Stopping now.' call tem_abort() end if nTotal = nElems*nDofs*fun%nComponents allocate( input_varRes(nTotal) ) res = 1.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes ) res(:nTotal) = res(:nTotal) * input_varRes end do deallocate(input_varRes) end subroutine tem_evalMultiply_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as tem_evalMultiply_forElement except it evaluate it multiply values !! from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point. recursive subroutine tem_evalMultiply_forPoint( fun, varsys, point, time, & & tree, nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar integer :: nTotal real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! nTotal = nPnts*fun%nComponents allocate( input_varRes(nTotal) ) res = 1.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = input_varRes ) res(:nTotal) = res(:nTotal) * input_varRes end do deallocate(input_varRes) end subroutine tem_evalMultiply_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as tem_evalMultiply_forPoint except it multiply values from points via !! indices which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine tem_evalMultiply_fromIndex( fun, varSys, time, iLevel, & & idx, idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData integer :: nTotal ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'tem_evalMultiply_fromIndex' ) nTotal = nVals*fun%nComponents allocate( input_varRes(nTotal) ) res = 1.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(iDep) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes ) res(:nTotal) = res(:nTotal) * input_varRes end do deallocate(input_varRes) end subroutine tem_evalMultiply_fromIndex ! ************************************************************************** ! ! ***************************************************************************! !> Routine to divide variables if all variables have same number of !! components. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'coeff', !! ncomponents = 3, !! vartype = "st_fun", !! st_fun = 0.25 !! }, !! { !! name = 'newVel', !! ncomponents = 1, !! vartype = "operation", !! operation = {kind='division', !! input_varname={velocity, coeff}} -- numerator, denominator !! } !! ... !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine tem_division_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! real(kind=rk) :: divisor(nElems*nDofs*fun%nComponents) real(kind=rk) :: dividend(nElems*nDofs*fun%nComponents) integer :: iComp, iDof, idx, iElem ! -------------------------------------------------------------------- ! call varSys%method%val(fun%input_varPos(1))%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = dividend ) call varSys%method%val(fun%input_varPos(2))%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = divisor ) do iElem = 1, nElems do iDof = 1, nDofs do iComp = 1, fun%nComponents idx = (( ielem-1)* fun%ncomponents* ndofs+( idof-1)* fun%ncomponents+icomp) res(idx) = dividend(idx) / divisor(idx) end do end do end do end subroutine tem_division_forElement ! ***************************************************************************! ! ************************************************************************** ! !> Same as division_forElement except it evaluate it division values !! from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point. recursive subroutine tem_division_forPoint( fun, varsys, point, time, & & tree, nPnts, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! real(kind=rk) :: divisor(nPnts*fun%nComponents) real(kind=rk) :: dividend(nPnts*fun%nComponents) integer :: iComp, iPnt, idx ! -------------------------------------------------------------------- ! call varSys%method%val(fun%input_varPos(1))%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = dividend ) call varSys%method%val(fun%input_varPos(2))%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = divisor ) do iPnt = 1, nPnts do iComp = 1, fun%nComponents idx = (( ipnt-1)* fun%ncomponents+icomp) res(idx) = dividend(idx) / divisor(idx) end do end do end subroutine tem_division_forPoint ! ***************************************************************************! ! ************************************************************************** ! !> Same as division_forElement except it division values from points via !! indices which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine tem_division_fromIndex( fun, varSys, time, iLevel, & & idx, idxLen, nVals, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData real(kind=rk) :: divisor(nVals*fun%nComponents) real(kind=rk) :: dividend(nVals*fun%nComponents) integer :: iComp, iVal ! -------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) ! get the nodal values for the 2 inputs !>TODO make it working for idxLen and contiguous access of index array call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'tem_division_fromIndex' ) call varSys%method%val(fun%input_varPos(1))%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(1) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = dividend ) call varSys%method%val(fun%input_varPos(2))%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(2) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = divisor ) do iVal = 1, nVals do iComp = 1, fun%nComponents res((iVal-1)*fun%nComponents + iComp) = & & dividend((iVal-1)*fun%nComponents + iComp) & & / divisor((iVal-1)*fun%nComponents + iComp) end do end do end subroutine tem_division_fromIndex ! ***************************************************************************! ! ***************************************************************************! !> Routine to multiply scalat times vector !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'coeff', !! ncomponents = 1, !! vartype = "st_fun", !! st_fun = 0.25 !! }, !! { !! name = 'newVel', !! ncomponents = 3, !! vartype = "operation", !! operation = {kind='multiply_scalar_times_vector', !! input_varname={coeff, velocity }} -- scalar, vector !! } !! ... !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine multiplyScalTimesVec_forElement( fun, varsys, elempos, & & time, tree, nElems, & & nDofs, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! real(kind=rk) :: scalar(nElems*nDofs) real(kind=rk) :: vector(nElems*nDofs*fun%nComponents) integer :: iComp, iElem, iDof ! -------------------------------------------------------------------- ! call varSys%method%val(fun%input_varPos(1))%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = scalar ) call varSys%method%val(fun%input_varPos(2))%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = vector ) do iElem = 1, nElems do iDof = 1, nDofs do iComp = 1, fun%nComponents res((( ielem-1)* fun%ncomponents* ndofs+( idof-1)* fun%ncomponents+icomp)) = & & scalar((iElem-1)*nDofs + iDof) & & * vector((( ielem-1)* fun%ncomponents* ndofs+( idof-1)* fun%ncomponents+icomp)) end do end do end do end subroutine multiplyScalTimesVec_forElement ! ***************************************************************************! ! ***************************************************************************! !> Same as multiplyScalTimesVec_forElement except it multiply values for !! given corrdinate points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine tem_multiplyScalTimesVec_forPoint( fun, varsys, point, & & time, tree, nPnts, & & res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) !--------------------------------------------------------------------------! real(kind=rk) :: scalar(nPnts) real(kind=rk) :: vector(nPnts*fun%nComponents) integer :: iComp, iPnt !--------------------------------------------------------------------------! call varSys%method%val(fun%input_varPos(1))%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = scalar ) call varSys%method%val(fun%input_varPos(2))%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = vector ) do iPnt = 1, nPnts do iComp = 1, fun%nComponents res((( ipnt-1)* fun%ncomponents+icomp)) = & & scalar(iPnt) * vector((( ipnt-1)* fun%ncomponents+icomp)) end do end do end subroutine tem_multiplyScalTimesVec_forPoint ! ***************************************************************************! ! ***************************************************************************! !> Same as multiplyScalTimesVec_fromElement except it multiply values !! from points via indices which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine tem_multiplyScalTimesVec_fromIndex( fun, varSys, time, & & iLevel, idx, & & idxLen, nVals, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) !--------------------------------------------------------------------------! type(tem_varSys_op_data_type), pointer :: opData real(kind=rk) :: scalar(nVals) real(kind=rk) :: vector(nVals*fun%nComponents) integer :: iComp, iVal !--------------------------------------------------------------------------! write(logUnit(10),*) 'Get the values of indices for derived variable',& & 'by multiplyScalTimesVec ', & & trim(varSys%varname%val(fun%myPos)) call C_F_POINTER( fun%method_Data, opData ) ! get the nodal values for the 2 inputs !>TODO make it working for idxLen and contiguous access of index array call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'tem_multiplyScalTimesVec_fromIndex' ) call varSys%method%val(fun%input_varPos(1))%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(1) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = scalar ) call varSys%method%val(fun%input_varPos(2))%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(2) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = vector ) do iVal = 1, nVals do iComp = 1, fun%nComponents res((iVal-1)*fun%nComponents + iComp) = & & scalar(iVal) * vector((iVal-1)*fun%nComponents + iComp) end do end do end subroutine tem_multiplyScalTimesVec_fromIndex ! ***************************************************************************! ! ***************************************************************************! !> Routine to divide vector by scalar !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'coeff', !! ncomponents = 1, !! vartype = "st_fun", !! st_fun = 0.25 !! }, !! { !! name = 'newVel', !! ncomponents = 3, !! vartype = "operation", !! operation = {kind='division', !! input_varname={velocity, coeff}} -- numerator, denominator !! } !! ... !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine divideVecByScal_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) !--------------------------------------------------------------------------! real(kind=rk) :: divisor(nElems*nDofs) real(kind=rk) :: dividend(nElems*nDofs*fun%nComponents) integer :: iComp, iElem, iDof !--------------------------------------------------------------------------! call varSys%method%val(fun%input_varPos(1))%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = dividend ) call varSys%method%val(fun%input_varPos(2))%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = divisor ) do iElem = 1, nElems do iDof = 1, nDofs do iComp = 1, fun%nComponents res((( ielem-1)* fun%ncomponents* ndofs+( idof-1)* fun%ncomponents+icomp)) = & & dividend((( ielem-1)* fun%ncomponents* ndofs+( idof-1)* fun%ncomponents+icomp)) & & / divisor((iElem-1)*nDofs + iDof) end do end do end do end subroutine divideVecByScal_forElement ! ***************************************************************************! ! ***************************************************************************! !> Same as divideVecByScal_forElement except it divides values from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine tem_divideVecByScal_forPoint( fun, varsys, point, time, & & tree, nPnts, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) !--------------------------------------------------------------------------! real(kind=rk) :: divisor(nPnts) real(kind=rk) :: dividend(nPnts*fun%nComponents) integer :: iComp, iPnt !--------------------------------------------------------------------------! call varSys%method%val(fun%input_varPos(1))%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = dividend ) call varSys%method%val(fun%input_varPos(2))%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = divisor ) do iPnt = 1, nPnts do iComp = 1, fun%nComponents res((( ipnt-1)* fun%ncomponents+icomp)) = & & dividend((( ipnt-1)* fun%ncomponents+icomp)) / divisor(iPnt) end do end do end subroutine tem_divideVecByScal_forPoint ! ***************************************************************************! ! ***************************************************************************! !> Same as divideVecByScal_fromElement except it divide values from points !! via indices which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine tem_divideVecByScal_fromIndex( fun, varSys, time, & & iLevel, idx, idxLen, & & nVals, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) !--------------------------------------------------------------------------! type(tem_varSys_op_data_type), pointer :: opData real(kind=rk) :: divisor(nVals) real(kind=rk) :: dividend(nVals*fun%nComponents) integer :: iComp, iVal !--------------------------------------------------------------------------! write(logUnit(4),*) 'Get the values of indices for derived variable',& & 'by divideVecByScal ', & & trim(varSys%varname%val(fun%myPos)) call C_F_POINTER( fun%method_Data, opData ) ! get the nodal values for the 2 inputs !>TODO make it working for idxLen and contiguous access of index array call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'tem_divideVecByScal_fromIndex' ) call varSys%method%val(fun%input_varPos(1))%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(1) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = dividend ) call varSys%method%val(fun%input_varPos(2))%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(2) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = divisor ) do iVal = 1, nVals do iComp = 1, fun%nComponents res((iVal-1)*fun%nComponents + iComp) = & & dividend((iVal-1)*fun%nComponents + iComp) / divisor(iVal) end do end do end subroutine tem_divideVecByScal_fromIndex ! ***************************************************************************! ! ************************************************************************** ! !> Extract component index of any vectorial variable. !! In lua file, first define new variable with varType operation kind as !! "extract" and provide name of the variable from which to extract !! component index via input_varname (it must be single variable) and !! index to extract via input_varIndex. !! If input_varname variable is not part of predefined solver variables then !! add also that variable via variable table. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'vel_y', !! ncomponents = 1, !! vartype = "operation", !! operation = {kind='extract', !! input_varname={'velocity'}, !! input_varindex = {2} !! } !! }, !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine extract_forElement( fun, varsys, elempos, time, tree, & & nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iElem, depVar_pos, depVar_nComps, iDof, comp_index, iComp real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! ! get the position of dependent variable, assuming only one depVar_pos = fun%input_varPos(1) ! get the nComp of dependent variable depVar_nComps = varSys%method%val( depVar_pos )%nComponents ! allocate array to save results allocate(input_varRes( nElems * nDofs * depVar_nComps )) ! derive dependent variable call varSys%method%val(depVar_pos)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes ) ! Extract component index from input_varRes do iElem = 1, nElems do iDof = 1, nDofs do iComp = 1, fun%nComponents comp_index = fun%input_varIndex(iComp) res((( ielem-1)* fun%ncomponents* ndofs+( idof-1)* fun%ncomponents+icomp) ) & & = input_varRes( & & (( ielem-1)* depvar_ncomps* ndofs+( idof-1)* depvar_ncomps+comp_index)) end do end do end do deallocate(input_varRes) end subroutine extract_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as extract_forElement except it extract from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine extract_forPoint( fun, varsys, point, time, tree, & & nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iPnt, depVar_pos, depVar_nComps, iComp, comp_index real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! ! get the position of dependent variable, assuming only one depVar_pos = fun%input_varPos(1) ! get the nComp of dependent variable depVar_nComps = varSys%method%val( depVar_pos )%nComponents ! allocate array to save results allocate(input_varRes( nPnts * depVar_nComps )) ! derive dependent variable call varSys%method%val(depVar_pos)%get_point( & & varSys = varSys, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = input_varRes ) ! Extract component index from input_varRes do iPnt = 1, nPnts do iComp = 1, fun%nComponents comp_index = fun%input_varIndex(iComp) res((( ipnt-1)* fun%ncomponents+icomp) ) & & = input_varRes( (( ipnt-1)* depvar_ncomps+comp_index) ) end do end do deallocate(input_varRes) end subroutine extract_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as extract_from Point except it extract from points via indices !! which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofIndex. !! recursive subroutine extract_fromIndex( fun, varSys, time, iLevel, idx, & & idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iVal, depVar_pos, depVar_nComps, iComp, comp_index real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'extract_fromIndex' ) ! get the position of dependent variable, assuming only one depVar_pos = fun%input_varPos(1) ! get the nComp of dependent variable depVar_nComps = varSys%method%val( depVar_pos )%nComponents ! allocate array to save results allocate(input_varRes( nVals * depVar_nComps )) ! derive dependent variable call varSys%method%val(depVar_pos)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(1) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes ) ! Extract component index from input_varRes do iVal = 1, nVals do iComp = 1, fun%nComponents comp_index = fun%input_varIndex(iComp) res((( ival-1)* fun%ncomponents+icomp) ) & & = input_varRes( (( ival-1)* depvar_ncomps+comp_index) ) end do end do deallocate(input_varRes) end subroutine extract_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Combine multiple variables into single variable with nComponent of !! output variable as sum of all input variables nComponents. !! In lua file, first define new variable with varType operation kind as !! "combine" and provide name of the variable from which to extract !! component index via input_varname (it must be single variable) and !! index to combine via input_varIndex. !! If input_varname variable is not part of predefined solver variables then !! add also that variable via variable table. !! !! \verbatim !! -- in lua file, one can define as following: !! variable = {{ !! name = 'dens_and_vel', !! ncomponents = 4, !! vartype = "operation", !! operation = {kind='combine', !! input_varname={'density','velocity'} !! } !! }, !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine combine_forElement( fun, varsys, elempos, time, tree, & & nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! ! This routine combines multiple variable together call tem_get_element_chunk( varSys = varSys, & & varPos = fun%input_varPos, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = res ) end subroutine combine_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> same as combine_fromelement except it extract from points !! !! the interface has to comply to the abstract interface !! tem_varsys_module#tem_varsys_proc_element. !! recursive subroutine combine_forPoint( fun, varsys, point, time, tree, & & nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! ! This routine combines multiple variable together call tem_get_point_chunk( varSys = varSys, & & varPos = fun%input_varPos, & & point = point, & & time = time, & & tree = tree, & & nPnts = nPnts, & & res = res ) end subroutine combine_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as combine_from Point except it combine from points via indices !! which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofIndex. !! recursive subroutine combine_fromIndex( fun, varSys, time, iLevel, idx, & & idxLen, nVals, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iVal, iDep integer :: maxComponents, compOff, dep_nComps, depVar_pos real(kind=rk), allocatable :: input_varRes(:) integer :: e_start, t_start, res_size type(tem_varSys_op_data_type), pointer :: opData ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'combine_fromIndex' ) ! Need to obtain the data variable for variable, and store it in an ! intermediate array, because all components should be put together in the ! res array. ! The temporary array therefore needs to be sufficiently large to store the ! maximal number of components. maxComponents = maxval(varSys%method%val(fun%input_varPos(:))%nComponents) ! Using a temporary array to store the variables and transfer them to res ! in the correct ordering afterwards. allocate(input_varRes(nVals*maxComponents)) compOff = 0 do iDep = 1, fun%nInputs ! get the position of dependent variable depVar_pos = fun%input_varPos(iDep) ! get the number of components for variable iVar dep_nComps = varSys%method%val(depVar_pos)%nComponents ! get the size of the needed part of the res array res_size = nVals * dep_nComps ! derive dependent variable call varSys%method%val(depVar_pos)%get_valOfIndex( & & varSys = varSys, & & time = time, & & iLevel = iLevel, & & idx = opData%input_pntIndex(iDep) & & %indexLvl(iLevel)%val( idx(:) ), & & nVals = nVals, & & res = input_varRes(:res_size) ) ! copy the information to the right positions in the result array ! res contains results for all variables, ! input_varRes is only for one variable do iVal = 1, nVals e_start = (iVal-1)*fun%nComponents + compOff t_start = (iVal-1)*dep_nComps res( (e_start+1) : (e_start+dep_nComps) ) & & = input_varRes( t_start + 1 : t_start + dep_nComps ) end do ! Increase the component offset for the next variables. compOff = compOff + dep_nComps end do !iDep deallocate(input_varRes) end subroutine combine_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> Routine to return time reduction variables !! !! \verbatim !! -- in lua file, one can define as following: !! variable = { !! { !! name = 'press_timeavg', !! ncomponents = 1, !! vartype = "operation", !! operation = { !! kind='reduction_transient', !! input_varname={'pressure'}, !! reduction_transient = {kind = 'average', nrecord = 1000} !! } !! } !! ... !! } !! \endverbatim !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_element. !! recursive subroutine reductionTransient_forElement( fun, varsys, elempos, & & time, tree, nElems, & & nDofs, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ------------------------------------------------------------------------ ! type(tem_varSys_op_data_type), pointer :: opData ! ------------------------------------------------------------------------ ! !call C_F_POINTER( fun%method_Data, opData ) ! Avoid warning about unused varsys dummy argument call C_F_POINTER( varsys%method%val(fun%mypos)%method_Data, opData ) if (time%sim < 0.0_rk) then write(logunit(10),*) 'Avoid unused argument warning for time' write(logunit(10),*) 'tree%nElems:', tree%nElems end if res = 0.0_rk call tem_reduction_transient_getElement( me = opData%redTrans, & & elemPos = elemPos, & & nElems = nElems, & & nDofs = nDofs, & & res = res ) end subroutine reductionTransient_forElement ! ************************************************************************** ! ! ************************************************************************** ! !> Same as reductionTransient_forElement except it evaluate it multiply values !! from points !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_point. recursive subroutine reductionTransient_forPoint( fun, varsys, point, time, & & tree, nPnts, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Three-dimensional coordinates at which the variable should be !! evaluated. Only useful for variables provided as space-time functions. real(kind=rk), intent(in) :: point(:,:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nPnts !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! res = 0.0_rk write(logunit(1),*) 'Variable: ', trim(varsys%varname%val(fun%mypos)) write(logunit(1),*) 'nPnts=', nPnts write(logunit(1),*) 'tree%nElems=', tree%nElems write(logunit(1),*) 'time%sim=', time%sim write(logunit(1),*) 'size(point)=', size(point) flush(logunit(1)) call tem_abort('Reduction_transient for Point is not implemented yet') end subroutine reductionTransient_forPoint ! ************************************************************************** ! ! ************************************************************************** ! !> Same as reductionTransient_forPoint except it multiply values from points !! via indices which are setup before !! !! The interface has to comply to the abstract interface !! tem_varSys_module#tem_varSys_proc_getvalofindex. recursive subroutine reductionTransient_fromIndex( fun, varSys, time, & & iLevel, idx, idxLen, & & nVals, res ) !--------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Level on which values are requested integer, intent(in) :: iLevel !> Index of points in the growing array and variable val array to !! return. !! Size: nVals integer, intent(in) :: idx(:) !> With idx as start index in contiguous memory, !! idxLength defines length of each contiguous memory !! Size: nVals integer, optional, intent(in) :: idxLen(:) !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nVals !> Resulting values for the requested variable. !! !! Dimension: n requested entries x nComponents of this variable !! Access: (iElem-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! res = 0.0_rk call tem_varSys_check_inArgs( fun, varSys, time, iLevel, idx, idxLen, & & nVals, label = 'reductionTransient_fromIndex' ) call tem_abort('Reduction_transient from Index is not implemented yet') end subroutine reductionTransient_fromIndex ! ************************************************************************** ! ! ************************************************************************** ! !> This subroutine call set_params of input_variable !! !! the interface has to comply to the abstract interface !! tem_varsys_module#tem_varsys_proc_setParams. !! recursive subroutine tem_opVar_setParams(fun, varSys, instring) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Input string with parameter to set in method_data character(len=*), intent(in) :: instring ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar ! ---------------------------------------------------------------------- ! do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! set params in dependent variable call varSys%method%val(posDepVar)%set_params( varSys = varSys, & & inString = inString ) end do end subroutine tem_opVar_setParams ! ************************************************************************** ! ! ************************************************************************** ! !> This subroutine call get_params of input_variable !! !! the interface has to comply to the abstract interface !! tem_varsys_module#tem_varsys_proc_setParams. !! recursive subroutine tem_opVar_getParams( fun, varSys, instring, outstring ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Input string with parameter to set in method_data character(len=*), intent(in) :: instring !> Output string with requested parameter value from method_data character(len=*), intent(out) :: outstring ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar ! ---------------------------------------------------------------------- ! do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! get params from dependent variable call varSys%method%val(posDepVar)%get_params( varSys = varSys, & & inString = inString, & & outString = outString ) ! if outString is filled by any dependent variable then exit loop if (len(trim(outString)) > 0) then outString = trim(outString)//'_oper' exit end if end do end subroutine tem_opVar_getParams ! ************************************************************************** ! ! ************************************************************************** ! !> This subroutine call setup indices of input_variable !! !! the interface has to comply to the abstract interface !! tem_varsys_module#tem_varsys_proc_setupIndices. !! recursive subroutine tem_opVar_setupIndices( fun, varSys, point, offset_bit, & & iLevel, tree, nPnts, idx ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> List of space coordinate points to store as growing array in !! method_data real(kind=rk), intent(in) :: point(:,:) !> Offset bit encoded as character for every point. !! !! Offset integer coord(3) is converted into a character with !! offset_bit = achar( (coord(1)+1) + (coord(2)+1)*4 + (coord(3)+1)*16 ) !! Backward transformation form character to 3 integer: !! coord(1) = mod(ichar(offset_bit),4) - 1 !! coord(2) = mod(ichar(offset_bit),16)/4 - 1 !! coord(3) = ichar(offset_bit)/16 - 1 !! !! If not present default is to center i.e offset_bit = achar(1+4+16) character, optional, intent(in) :: offset_bit(:) !> Level to which input points belong to integer, intent(in) :: iLevel !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of points to add in method_data of this variable integer, intent(in) :: nPnts !> Index of points in the growing array and variable val array. !! Size: nPoints !! !! This must be stored in boundary or source depends on who !! calls this routine. !! This index is required to return a value using getValOfIndex. integer, intent(out) :: idx(:) ! ---------------------------------------------------------------------- ! type(tem_varSys_op_data_type), pointer :: opData integer :: iPnt, iDep type(grw_intArray_type), allocatable :: inputIndex_loc(:) integer, allocatable :: idxPerPnt(:) ! ---------------------------------------------------------------------- ! call C_F_POINTER( fun%method_Data, opData ) ! allcoate the index array for all inpits if (.not. allocated(opData%input_pntIndex)) then allocate( opData%input_pntIndex(fun%nInputs) ) end if ! allocate temporary inputIndex with size of nInputs and initialize ! growing array with length nPnts allocate(inputIndex_loc(fun%nInputs)) ! Now fill in the index arrays for the inputs call tem_opVar_fill_inputIndex( fun = fun, & & varSys = varSys, & & point = point, & & offset_bit = offset_bit, & & iLevel = iLevel, & & tree = tree, & & nPnts = nPnts, & & inputIndex = inputIndex_loc ) ! KM: Workaround for intel compiler in SuperMUC, the pointer ! gets corrupted after recursive call to depend variable call C_F_POINTER( fun%method_Data, opData ) ! initialize index with zero to identify points which does not ! belong to subTree allocate(idxPerPnt(fun%nInputs)) idx = 0 do iPnt = 1, nPnts do iDep = 1, fun%nInputs idxPerPnt(iDep) = inputIndex_loc(iDep)%val(iPnt) end do ! set index only when any of dependent variable has valid index if (any(idxPerPnt > 0)) then do iDep = 1, fun%nInputs call append(me = opData%input_pntIndex(iDep)%indexLvl(iLevel), & & val = inputIndex_loc(iDep)%val(iPnt) ) end do ! set index to last position in input_pntIndex of dep var 1 of ! indexLvl of iLevel idx(iPnt) = opData%input_pntIndex(1)%indexLvl(iLevel)%nVals end if end do do iDep = 1, fun%nInputs call truncate (opData%input_pntIndex(iDep)%indexLvl(iLevel) ) end do end subroutine tem_opVar_setupIndices ! ************************************************************************** ! ! ************************************************************************** ! !> subroutine to fill index for the setuo Index routine called for operation !! variables, it is also used by the solver recursive subroutine tem_opVar_fill_inputIndex( fun, varSys, point, & & offset_bit, iLevel, tree, & & nPnts, inputIndex ) !---------------------------`----------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> List of space coordinate points to store as growing array in !! method_data real(kind=rk), intent(in) :: point(:,:) !> Offset bit encoded as character for every point. !! !! Offset integer coord(3) is converted into a character with !! offset_bit = achar( (coord(1)+1) + (coord(2)+1)*4 + (coord(3)+1)*16 ) !! Backward transformation form character to 3 integer: !! coord(1) = mod(ichar(offset_bit),4) - 1 !! coord(2) = mod(ichar(offset_bit),16)/4 - 1 !! coord(3) = ichar(offset_bit)/16 - 1 !! !! If not present default is to center i.e offset_bit = achar(1+4+16) character, optional, intent(in) :: offset_bit(:) !> Level to which input points belong to integer, intent(in) :: iLevel !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of points to add in method_data of this variable integer, intent(in) :: nPnts !> input index for dependent variables !! size: fun%nInputs type(grw_intArray_type), intent(out) :: inputIndex(:) !--------------------------------------------------------------------------! integer, allocatable :: idx_loc(:) integer :: iDep, posDepVar !--------------------------------------------------------------------------! ! allocate local index array, needed for setup_indices call allocate( idx_loc(nPnts) ) do iDep = 1, fun%nInputs idx_loc = 0 ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! setup indices in dependent variable. ! idx output from any variables will be same so it just overwrites and ! returns the idx of last dependent variable call varSys%method%val(posDepVar)%setup_indices( & & varSys = varSys, & & point = point, & & offset_bit = offset_bit, & & iLevel = iLevel, & & tree = tree, & & nPnts = nPnts, & & idx = idx_loc ) call append( me = inputIndex(iDep), & & val = idx_loc ) call truncate (inputIndex(iDep)) write(logUnit(9),*) 'nIndex on level for input variable ', & & trim(varSys%varname%val(posDepVar)), & & ' on Lvl ', iLevel, & & ' are = ', inputIndex(iDep)%nVals end do deallocate(idx_loc) end subroutine tem_opVar_fill_inputIndex end module tem_operation_var_module ! **************************************************************************** !