Routine to multiply variables if all variables have same number of components.
\verbatim -- in lua file, one can define as following: variable = {{ name = 'coeff', ncomponents = 1, vartype = "st_fun", st_fun = 0.25 }, { name = 'newVel', ncomponents = 1, vartype = "operation", operation = {kind='multiplication', input_varname={coeff, vel_mag}} } ... } \endverbatim
The interface has to comply to the abstract interface tem_varSys_module#tem_varSys_proc_element.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(tem_varSys_op_type), | intent(in) | :: | fun |
Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables. |
||
type(tem_varSys_type), | intent(in) | :: | varSys |
The variable system to obtain the variable from. |
||
integer, | intent(in) | :: | elempos(:) |
Position of the TreeID of the element to get the variable for in the global treeID list. |
||
type(tem_time_type), | intent(in) | :: | time |
Point in time at which to evaluate the variable. |
||
type(treelmesh_type), | intent(in) | :: | tree |
global treelm mesh info |
||
integer, | intent(in) | :: | nElems |
Number of values to obtain for this variable (vectorized access). |
||
integer, | intent(in) | :: | nDofs |
Number of degrees of freedom within an element. |
||
real(kind=rk), | intent(out) | :: | res(:) |
Resulting values for the requested variable. Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp |
recursive subroutine tem_evalMultiply_forElement( fun, varsys, elempos, & & time, tree, nElems, & & nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar integer :: nTotal real(kind=rk), allocatable :: input_varRes(:) ! ---------------------------------------------------------------------- ! if (nDofs > 1) then write(*,*) 'TODO: evalmultiply does not work for polynomial data yet' write(*,*) ' It makes use of a multiplication, which can not' write(*,*) ' directly be done that simple in modal space!' write(*,*) '' write(*,*) 'Need to replace this routine in Ateles!' write(*,*) 'Stopping now.' call tem_abort() end if nTotal = nElems*nDofs*fun%nComponents allocate( input_varRes(nTotal) ) res = 1.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes ) res(:nTotal) = res(:nTotal) * input_varRes end do deallocate(input_varRes) end subroutine tem_evalMultiply_forElement