Evaluate the function pointers of the dependent variables, and then calculate the addition or arbinary number of input variables with all input variables have same nComponents. ( scalar or vector ) In lua file, first define new variable with varType operation kind as "addition" and provide two dependent variable via input_varname. If input_varname variable is not part of predefined solver variables then add also that variable via variable table for example spacetime function variable.
\verbatim -- in lua file, one can define as following: variable = {{ name = 'dens_reference', ncomponents = 1, vartype = "st_fun", st_fun = luaFun }, { name = 'dens_difference', ncomponents = 1, vartype = "operation", operation = {kind='addition', input_varname={density, dens_reference}} } ... } \endverbatim
The interface has to comply to the abstract interface tem_varSys_module#tem_varSys_proc_element.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(tem_varSys_op_type), | intent(in) | :: | fun |
Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables. |
||
type(tem_varSys_type), | intent(in) | :: | varSys |
The variable system to obtain the variable from. |
||
integer, | intent(in) | :: | elempos(:) |
Position of the TreeID of the element to get the variable for in the global treeID list. |
||
type(tem_time_type), | intent(in) | :: | time |
Point in time at which to evaluate the variable. |
||
type(treelmesh_type), | intent(in) | :: | tree |
global treelm mesh info |
||
integer, | intent(in) | :: | nElems |
Number of values to obtain for this variable (vectorized access). |
||
integer, | intent(in) | :: | nDofs |
Number of degrees of freedom within an element. |
||
real(kind=rk), | intent(out) | :: | res(:) |
Resulting values for the requested variable. Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp |
recursive subroutine tem_evalAdd_forElement( fun, varsys, elempos, time, & & tree, nElems, nDofs, res ) ! ---------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! ---------------------------------------------------------------------- ! integer :: iDep, posDepVar real(kind=rk), allocatable :: input_varRes(:) integer :: nTotal ! ---------------------------------------------------------------------- ! nTotal = nElems*nDofs*fun%nComponents allocate(input_varRes(nTotal)) res = 0.0_rk do iDep = 1, fun%nInputs ! get position of dependent var in varSys posDepVar = fun%input_varPos(iDep) ! derive dependent variable call varSys%method%val(posDepVar)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = time, & & tree = tree, & & nElems = nElems, & & nDofs = nDofs, & & res = input_varRes ) res(:nTotal) = res(:nTotal) + input_varRes end do deallocate(input_varRes) end subroutine tem_evalAdd_forElement