This function calculates the sigma for the spongeLayer from treeid for the polynomial order n6. Sponge profile: where, \sigma_A - sponge strength, L - thickness, x0 - start of sponge.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(tem_spongeLayer_plane_type) | :: | me |
Spatial sponge layer to evaluate |
|||
integer(kind=long_k), | intent(in) | :: | treeIds(n) |
treeIds of elements in given level |
||
type(treelmesh_type), | intent(in) | :: | tree |
global treelm mesh |
||
integer, | intent(in) | :: | n |
Number of arrays to return |
return value
function spongeLayer_plane_polyn6_for_treeids(me, treeids, tree, n) & & result(res) ! -------------------------------------------------------------------------- !> Spatial sponge layer to evaluate type(tem_spongeLayer_plane_type) :: me !> Number of arrays to return integer, intent(in) :: n !> global treelm mesh type( treelmesh_type ), intent(in) ::tree !> treeIds of elements in given level integer(kind=long_k), intent(in) :: treeIds(n) !> return value real(kind=rk) :: res(n) ! -------------------------------------------------------------------------- integer :: i real(kind=rk) :: sigma, origin(3), normal(3), vec1(3), vec2(3), coord(3) real(kind=rk) :: proj_len1, proj_len2, const_fac ! -------------------------------------------------------------------------- origin(:) = me%origin normal(:) = me%normal const_fac = 729_rk/(16_rk*me%thickness**6) do i = 1,n !barycentric coordinate coord = tem_BaryOfId( tree, treeIds(i) ) vec1(:) = coord(:) - origin(:) vec2(:) = me%thickness*normal(:) + origin(:) - coord(:) proj_len1 = vec1(1)*normal(1)+ vec1(2)*normal(2)+vec1(3)*normal(3) proj_len2 = vec2(1)*normal(1)+ vec2(2)*normal(2)+vec2(3)*normal(3) if (proj_len1 > 0) then sigma = const_fac * proj_len2**2 * (proj_len1**4) res(i) = min(1.0_rk, sigma) * me%dampFactor else res(i) = 0.0_rk end if end do end function spongeLayer_plane_polyn6_for_treeids