This function calculates the sigma for the spongeLayer from coord for the polynomial order n6. Sponge profile: where, \sigma_A - sponge strength, L - thickness, x0 - start of sponge.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(tem_spongeLayer_plane_type) | :: | me |
Spatial sponge layer to evaluate |
|||
real(kind=rk), | intent(in) | :: | coord(n,3) |
barycentric Ids of an elements. 1st index goes over number of elements and 2nd index goes over x,y,z coordinates |
||
integer, | intent(in) | :: | n |
Number of arrays to return |
return value
function spongeLayer_plane_polyn6_for_coord(me, coord, n) result(res) ! -------------------------------------------------------------------------- !> Spatial sponge layer to evaluate type(tem_spongeLayer_plane_type) :: me !> Number of arrays to return integer, intent(in) :: n !> barycentric Ids of an elements. !! 1st index goes over number of elements and !! 2nd index goes over x,y,z coordinates real(kind=rk), intent( in ) :: coord(n,3) !> return value real(kind=rk) :: res(n) ! -------------------------------------------------------------------------- integer :: i real(kind=rk) :: sigma, origin(3), normal(3), vec1(3), vec2(3) real(kind=rk) :: proj_len1, proj_len2, const_fac ! -------------------------------------------------------------------------- origin(:) = me%origin normal(:) = me%normal const_fac = 729_rk/(16_rk*me%thickness**6) do i = 1,n vec1(:) = coord(i,:) - origin(:) vec2(:) = me%thickness*normal(:) + origin(:) - coord(i,:) proj_len1 = vec1(1)*normal(1) + vec1(2)*normal(2) + vec1(3)*normal(3) proj_len2 = vec2(1)*normal(1) + vec2(2)*normal(2) + vec2(3)*normal(3) sigma = const_fac * proj_len2**2 * (proj_len1**4) if (proj_len1 > 0) then res(i) = min(1.0_rk, sigma) * me%dampFactor else res(i) = 0.0_rk end if end do end function spongeLayer_plane_polyn6_for_coord