This function calculates the sigma for the box shape sponge layer from coord for polynomial n5. Sponge profile: where, \sigma_A - sponge strength, L - thickness, x0 - start of sponge.
Profile is taken from: Xu, Hui; Sagaut, Pierre (2013): Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods. In Journal of Computational Physics 245, pp. 14-42. DOI: 10.1016/j.jcp.2013.02.051.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(tem_spongeLayer_box_type) | :: | me |
Spatial sponge layer to evaluate |
|||
real(kind=rk), | intent(in) | :: | coord(n,3) |
barycentric Ids of an elements. 1st index goes over number of elements and 2nd index goes over x,y,z coordinates |
||
integer, | intent(in) | :: | n |
Number of arrays to return |
return value
function spongeLayer_box_sharpCornerPolyn5_for_coord(me, coord, n) & & result(res) ! -------------------------------------------------------------------------- !> Spatial sponge layer to evaluate type(tem_spongeLayer_box_type) :: me !> Number of arrays to return integer, intent(in) :: n !> barycentric Ids of an elements. !! 1st index goes over number of elements and !! 2nd index goes over x,y,z coordinates real(kind=rk), intent( in ) :: coord(n,3) !> return value real(kind=rk) :: res(n) ! -------------------------------------------------------------------------- integer :: i real(kind=rk) :: sigma, origin(3), extent(3), coordLoc(3), normal real(kind=rk) :: proj_len1, proj_len2 real(kind=rk) :: vec_min(3), vec_max(3), vec_minSqr(3), vec_maxSqr(3) real(kind=rk) :: rad, const_fac, box_max(3) ! -------------------------------------------------------------------------- origin(:) = me%origin extent(:) = me%extent box_max(:) = origin(:) + extent(:) const_fac = 3125_rk/(256_rk*me%thickness**5) do i = 1,n coordLoc = coord(i,:) vec_min(:) = coordLoc(:) - origin(:) vec_max(:) = coordLoc(:) - box_max(:) vec_minSqr(:) = vec_min(:)**2 vec_maxSqr(:) = vec_max(:)**2 proj_len1 = 0_rk proj_len2 = 0_rk normal = 1_rk rad = 0_rk ! Bottom-South-West: -x,-y,-z if (all(coordLoc(:) < origin(:))) then rad = sqrt( max(vec_minSqr(1), vec_minSqr(2), vec_minSqr(3)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(2) < origin(2) & & .and. coordLoc(3) < origin(3)) then ! Bottom-South-East: x, -y, -z rad = sqrt( max(vec_maxSqr(1), vec_minSqr(2), vec_minSqr(3)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(2) > box_max(2) & & .and. coordLoc(3) < origin(3)) then ! Bottom-North-West: -x, y, -z rad = sqrt( max(vec_minSqr(1), vec_maxSqr(2), vec_minSqr(3)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(2) > box_max(2) & & .and. coordLoc(3) < origin(3)) then ! Bottom-North-East: x, y, -z rad = sqrt( max(vec_maxSqr(1), vec_maxSqr(2), vec_minSqr(3)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(2) < origin(2) & & .and. coordLoc(3) > box_max(3)) then ! Top-South-West: -x, -y, z rad = sqrt( max(vec_minSqr(1), vec_minSqr(2), vec_maxSqr(3)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(2) < origin(2) & & .and. coordLoc(3) > box_max(3)) then ! Top-South-East: x, -y, z rad = sqrt( max(vec_maxSqr(1), vec_minSqr(2), vec_maxSqr(3)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(2) > box_max(2) & & .and. coordLoc(3) > box_max(3)) then ! Top-North-West: -x, y, z rad = sqrt( max(vec_minSqr(1), vec_maxSqr(2), vec_maxSqr(3)) ) else if (all(coordLoc(:) > box_max(:))) then ! Top-North-East: x, y, z rad = sqrt( max(vec_maxSqr(1), vec_maxSqr(2), vec_maxSqr(3)) ) else if (coordLoc(2) < origin(2) .and. coordLoc(3) < origin(3)) then ! Botton-South: -y,-z rad = sqrt( max(vec_minSqr(2), vec_minSqr(3)) ) else if (coordLoc(2) < origin(2) .and. coordLoc(3) > box_max(3)) then ! Top-South: -y, z rad = sqrt( max(vec_minSqr(2), vec_maxSqr(3)) ) else if (coordLoc(2) > box_max(2) .and. coordLoc(3) < origin(3)) then ! Botom-North: -y, z rad = sqrt( max(vec_maxSqr(2), vec_minSqr(3)) ) else if (coordLoc(2) > box_max(2) .and. coordLoc(3) > box_max(3)) then ! Top-North: y, z rad = sqrt( max(vec_maxSqr(2), vec_maxSqr(3)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(3) < origin(3)) then ! Botton-West: -x,-z rad = sqrt( max(vec_minSqr(1), vec_minSqr(3)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(3) < origin(3)) then ! Bottom-East: x,-z rad = sqrt( max(vec_maxSqr(1), vec_minSqr(3)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(3) > box_max(3)) then ! Top-West: -x, z rad = sqrt( max(vec_minSqr(1), vec_maxSqr(3)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(3) > box_max(3)) then ! Top-East: x, z rad = sqrt( max(vec_maxSqr(1), vec_maxSqr(3)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(2) < origin(2)) then ! South-West: -x,-y rad = sqrt( max(vec_minSqr(1), vec_minSqr(2)) ) else if (coordLoc(1) < origin(1) .and. coordLoc(2) > box_max(2)) then ! North-West: -x, y rad = sqrt( max(vec_minSqr(1), vec_maxSqr(2)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(2) < origin(2)) then ! South-East: x, -y rad = sqrt( max(vec_maxSqr(1), vec_minSqr(2)) ) else if (coordLoc(1) > box_max(1) .and. coordLoc(2) > box_max(2)) then ! North-East: x, y rad = sqrt( max(vec_maxSqr(1), vec_maxSqr(2)) ) else if (coordLoc(1) < origin(1)) then ! West: -x normal = -1_rk rad = vec_min(1) else if (coordLoc(2) < origin(2)) then ! South: -y normal = -1_rk rad = vec_min(2) else if (coordLoc(3) < origin(3)) then ! Bottom: -z normal = -1_rk rad = vec_min(3) else if (coordLoc(1) > box_max(1)) then ! East: x normal = 1_rk rad = vec_max(1) else if (coordLoc(2) > box_max(2)) then ! North: y normal = 1_rk rad = vec_max(2) else if (coordLoc(3) > box_max(3)) then ! Top: z normal = 1_rk rad = vec_max(3) end if proj_len1 = rad*normal proj_len2 = (me%thickness*normal - rad)*normal if (proj_len1 > 0 .and. proj_len2 > 0) then sigma = const_fac * proj_len2 * (proj_len1**4) res(i) = sigma*me%dampFactor else if (proj_len2 < 0) then ! If coord is beyond thickness res(i) = me%dampFactor else res(i) = 0.0_rk end if end do end function spongeLayer_box_sharpCornerPolyn5_for_coord