Generate a predefined line with a given number of elements
This serves as an simple grid generation for performance or scaling analysis without being obliged to use Seeder. You have to specify the generic grid parameters in the lua file instead of the mesh folder
mesh = { predefined='line', -- or: 'line_bounded'
origin = {0.,0.,0.},
length = 10.,
elementcount = 6 }
You have to specify the shape 'line', a bounding box origin, its length and the number of elements, which results in different amount elements in the grid.\n The result of this routine is mainly the treeID list with the additional lists for saving the properties. The generated line will be a line of elementcount elements along the X-Axis with periodicity in all directions.
It is also possible to generate a mesh with boundary conditions in the X direction (west and east), by using the predefined 'line_bounded'. In this case these two boundary conditions need to be provided in the solver configuration.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(treelmesh_type), | intent(out) | :: | me |
Mesh to generate |
||
real(kind=rk), | intent(in) | :: | origin(3) |
Corner of the cube |
||
real(kind=rk), | intent(in) | :: | length |
Length of cube |
||
integer, | intent(in) | :: | elementcount |
Number of elements in the line |
||
integer, | intent(in) | :: | myPart |
Partition of the caller (starts with 0) |
||
integer, | intent(in) | :: | nParts |
Number of partitions |
||
integer, | intent(in) | :: | comm |
communicator to be used |
||
character(len=*), | intent(in) | :: | predefined |
Label describing the internal mesh. |
||
character(len=*), | intent(in) | :: | bclabel |
Label describing the boundary conditions to set for this mesh. |
subroutine generate_treelm_elements( me, origin, length, elementcount, & & myPart, nParts, comm, predefined, & & bclabel ) ! -------------------------------------------------------------------- ! !> Mesh to generate type(treelmesh_type), intent(out) :: me !> Corner of the cube real(kind=rk), intent(in) :: origin(3) !> Length of cube real(kind=rk), intent(in) :: length !> Number of elements in the line integer, intent(in) :: elementcount !> Partition of the caller (starts with 0) integer, intent(in) :: myPart !> Number of partitions integer, intent(in) :: nParts !> communicator to be used integer, intent(in) :: comm !> Label describing the internal mesh. character(len=*), intent(in) :: predefined !> Label describing the boundary conditions to set for this mesh. character(len=*), intent(in) :: bclabel ! -------------------------------------------------------------------- ! integer :: level integer(kind=long_k) :: firstID, lastID integer(kind=long_k) :: share integer :: remainder integer :: iPart, iElem integer :: coord(4) integer :: lastcoord integer :: xbound_pad ! -------------------------------------------------------------------- ! me%global%nParts = nParts me%global%myPart = myPart me%global%comm = comm ! Face definitions make the first and last face coincide. ! To allow boundary definitions on both sides, we need to make sure, there ! is at least one additional element. if (predefined == 'line_bounded') then xbound_pad = 1 else xbound_pad = 0 end if ! Find an appropriate level of at least 1. level = max( ceiling(log(real(elementcount+xbound_pad,kind=rk)) & & / log(2.0_rk)), 1 ) me%global%origin = origin me%global%BoundingCubeLength = length*(real(2**level, kind=rk) & & /real(elementcount, kind=rk)) me%global%minLevel = level me%global%maxLevel = level me%global%label = 'Generic_Line' me%global%predefined = predefined write(me%global%comment,'(a15,i7,a16,i2,a1)') & & 'Generated with ', nParts, ' Parts and ', elementcount, & & ' elements.' me%global%dirname = './' ! Boundary property to define periodic boundary me%global%nProperties = 1 if (associated(me%global%property)) deallocate(me%global%property) if (associated(me%property)) deallocate(me%property) allocate(me%global%Property(me%global%nProperties)) allocate(me%Property(me%global%nProperties)) allocate(me%Part_First(nParts)) allocate(me%Part_Last(nParts)) ! Compute the treeIDs of the mesh: firstID = tem_firstIdAtLevel(level) lastcoord = elementcount - 1 lastID = tem_IdOfCoord(coord = [lastcoord, 0, 0, level], offset = firstID ) ! Total number of elements in this mesh me%global%nElems = elementcount share = me%global%nElems / int(nParts, kind=long_k) remainder = int(mod(me%global%nElems, int(nParts, kind=long_k))) ! The first partition starts always with the firstID me%Part_First(1) = firstID ! Up to remainder partitions have share + 1 elements coord = 0 coord(4) = level do iPart=2,remainder+1 coord(1) = coord(1) + int(share) me%Part_Last(iPart-1) = tem_idofcoord(coord, offset = firstID) coord(1) = coord(1) + 1 me%Part_First(iPart) = tem_idofcoord(coord, offset = firstID) end do ! The remaining elements get exactly the share elements: do iPart=remainder+2,nParts coord(1) = coord(1) + int(share) - 1 me%Part_Last(iPart-1) = tem_idofcoord(coord, offset = firstID) coord(1) = coord(1) + 1 me%Part_First(iPart) = tem_idofcoord(coord, offset = firstID) end do ! The last partition ends always with the lastID me%Part_Last(nParts) = lastID ! Local data: if (myPart < remainder) then me%nElems = int(share+1) me%elemOffset = int(myPart, kind=long_k) * (share+1_long_k) else me%nElems = int(share) me%elemOffset = (int(myPart, kind=long_k) * share) & & + int(remainder, kind=long_k) end if ! All elements have (periodic) boundaries me%Property(1)%nElems = me%nElems me%Property(1)%offset = me%elemOffset allocate(me%Property(1)%ElemID(me%Property(1)%nElems)) ! Please note, that the tem_bc_prop_module will set boundary conditions ! based on this label accordingly! me%global%Property(1)%label = trim(bclabel) me%global%Property(1)%bitpos = prp_hasBnd me%global%Property(1)%nElems = me%Property(1)%nElems allocate(me%treeID(me%nElems)) allocate(me%ElemPropertyBits(me%nElems)) ! Only has Boundary Property: me%ElemPropertyBits = ibset(0_long_k, prp_hasBnd) ! Filling the treeIDs: do iElem = 1, me%nElems me%Property(1)%ElemID(iElem) = iElem ! We can only have 2**20 elements per dimension, so in this case where ! we create a line, we won't exceed the integer limit. Thus we safely can ! cast the long integer elemOffset to a normal integer. coord(1) = int(me%elemOffset) + iElem - 1 me%treeID(iElem) = tem_idofcoord(coord, offset=firstID) end do end subroutine generate_treelm_elements