ply_nodeset_module Module

Collection of node sets to use in the nodal representation of the solution.

Node distributions on the reference interval [-1,1] are to be described by functions that satisfy the ply_nodeset_coords interface and return an array of 1D coordinates for the given number of points.

The following sets of nodes are available:


Uses

  • module~~ply_nodeset_module~~UsesGraph module~ply_nodeset_module ply_nodeset_module env_module env_module module~ply_nodeset_module->env_module tem_param_module tem_param_module module~ply_nodeset_module->tem_param_module

Used by

  • module~~ply_nodeset_module~~UsedByGraph module~ply_nodeset_module ply_nodeset_module module~ply_l2p_module ply_l2p_module module~ply_l2p_module->module~ply_nodeset_module module~ply_lagrange_module ply_lagrange_module module~ply_l2p_module->module~ply_lagrange_module module~ply_lagrange_module->module~ply_nodeset_module module~ply_nodes_module ply_nodes_module module~ply_nodes_module->module~ply_nodeset_module

Interfaces

interface

  • public function ply_nodeset_coords(nPoints) result(x)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: nPoints

    The number of points to create.

    Return Value real(kind=rk), (nPoints)

    The coordinates of the nodeset in the interval [-1,1]. The array has to have the length nPoints.


Functions

public function ply_nodeset_legendre(nPoints) result(x)

Compute Gauss-Legendre integration points on the interval [-1,1].

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nPoints

The number of integration points.

Return Value real(kind=rk), (nPoints)

The coordinates of the Legendre points on the interval [-1,1]. The array has to have the length nPoints.

public function ply_nodeset_chebyshev(nPoints) result(x)

Generates a given number of Chebyshev points on the unit interval [-1;+1].

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nPoints

The number of points to generate

Return Value real(kind=rk), (nPoints)

The coordinates of the Chebyshev points on the interval [-1,1]. The array has to have the length nPoints.

public function ply_nodeset_chebyloba(nPoints) result(x)

Generates a given number of Chebyshev-Lobatto points on the unit interval [-1;+1].

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nPoints

The number of points to generate

Return Value real(kind=rk), (nPoints)

The coordinates of the Chebyshev-Lobatto points on the interval [-1,1]. The array has to have the length nPoints.